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Abstract: This paper addresses the problem of dynamic input allocation in the presence of plant
uncertainties. The current state of the art shows how to design an Allocator as the cascade of an
Optimizer and an Annihilator to achieve steady-state input optimality and output invisibility
simultaneously. This work proposes a novel algorithm based on polynomial factorization to
design a dynamic Annihilator. The critical aspect of this approach lies in the assumption of the
perfect plant knowledge, making the Annihilator not robust to uncertainties. A robustification
process is introduced by optimizing its design parameters. This approach is formulated as a
model-matching problem aiming to reduce the output mismatch induced by the allocation
scheme while maintaining steady-state optimality. As the numerical simulations highlight, this
method applies to linear and nonlinear allocation problems.
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1. INTRODUCTION

When designing suitable control laws for a system, the
structure and the number of actuators play a crucial role
in the synthesis problem. Actuators can be selected de-
pending on power-related assumptions to increase robust-
ness through redundancy or to reach specific performance
(e.g., Hamandi et al. (2021)). Input allocation represents
a field of Control Theory that builds on top of a prede-
termined control law and exploits input redundancy of
the plant to maximize the actuator’s performance without
affecting the system output; such a condition is usually
defined as output invisibility. The actuator’s performance
is evaluated through a specific cost, e.g., total power con-
sumption, distance from saturation limits, or fast zero-
crossing. For a general review of the topic, the reader
may refer to Zaccarian (2009), and Johansen and Fossen
(2013). The set of potential applications is quite vast.
For example, Trégouët et al. (2014) uses a static input
allocation scheme for reaction wheels desaturation on low-
orbit satellites. Instead, Furci et al. (2019) uses similar
results to implement a hierarchical control architecture
in an over-actuated hovercraft-like system. In particular,
the allocation scheme also handles nonlinearities in the
model. Fault Tolerance Control applications based on in-
put allocation are also proposed by Argha et al. (2019).
Lastly, it is essential to remark that input allocation has
been widely used in Nuclear Fusion research, specifically
in Tokamaks, exploiting the reactor coil redundancy to
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control plasma position and elongation safely. Refer to
Boncagni et al. (2011); Ambrosino et al. (2011); Esposito
et al. (2016) for more information. Input allocation was
first developed on LTI systems, where the input redun-
dancy property can be easily defined (Zaccarian (2009)).
Indeed, an LTI system can be non-, weakly, or strongly
redundant. As discussed in Galeani and Pettinari (2014),
and Cristofaro and Galeani (2014), the Allocator can be
designed as the cascade of a steady-state Optimizer and
an Annihilator. Using a static Annihilator, the difference
between weak and strong redundancy is that in the former,
output invisibility is ensured only at steady-state, while in
the latter, at any time. Output invisibility can also be
achieved for weakly redundant systems using a dynamic
Annihilator as discussed in Cristofaro and Galeani (2014).
Additional allocation techniques have been introduced in
Galeani et al. (2015) and Galeani and Sassano (2018b)
to handle the output-regulation problem on linear over-
actuated systems. The knowledge of the nominal plant
is often quite accurate at low frequencies rather than at
higher ones due to nonlinearities and time-varying effects.
The potential problem is that Allocator is designed on the
nominal plant. Thus, model uncertainties result in the loss
of the output invisibility property.
The main contribution of this paper is the design of

a dynamic allocation scheme that ensures robustness in
determining model uncertainties. A data-driven approach
to solve a similar problem has been introduced by Galeani
and Sassano (2018a). Instead, the proposed method relies
on optimization techniques where the output invisibility
is cast as a model-matching problem, and the model mis-
match is considered in the minimization goal.

A robust optimization approach for
dynamic input allocation ⋆

Alessandro Tenaglia ∗ Federico Oliva ∗ Mario Sassano ∗

Sergio Galeani ∗ Daniele Carnevale ∗

∗ Department of Civil Engineering and Computer Science
Engineering, University of Rome Tor Vergata, Rome, Italy (e-mail:

{alessandro.tenaglia, federico.oliva, mario.sassano,
sergio.galeani, daniele.carnevale}@uniroma2.it

Abstract: This paper addresses the problem of dynamic input allocation in the presence of plant
uncertainties. The current state of the art shows how to design an Allocator as the cascade of an
Optimizer and an Annihilator to achieve steady-state input optimality and output invisibility
simultaneously. This work proposes a novel algorithm based on polynomial factorization to
design a dynamic Annihilator. The critical aspect of this approach lies in the assumption of the
perfect plant knowledge, making the Annihilator not robust to uncertainties. A robustification
process is introduced by optimizing its design parameters. This approach is formulated as a
model-matching problem aiming to reduce the output mismatch induced by the allocation
scheme while maintaining steady-state optimality. As the numerical simulations highlight, this
method applies to linear and nonlinear allocation problems.

Keywords: Robust control applications, Uncertain systems, Input allocation, Parametric
optimization, Systems with saturation.

1. INTRODUCTION

When designing suitable control laws for a system, the
structure and the number of actuators play a crucial role
in the synthesis problem. Actuators can be selected de-
pending on power-related assumptions to increase robust-
ness through redundancy or to reach specific performance
(e.g., Hamandi et al. (2021)). Input allocation represents
a field of Control Theory that builds on top of a prede-
termined control law and exploits input redundancy of
the plant to maximize the actuator’s performance without
affecting the system output; such a condition is usually
defined as output invisibility. The actuator’s performance
is evaluated through a specific cost, e.g., total power con-
sumption, distance from saturation limits, or fast zero-
crossing. For a general review of the topic, the reader
may refer to Zaccarian (2009), and Johansen and Fossen
(2013). The set of potential applications is quite vast.
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For example, Trégouët et al. (2014) uses a static input
allocation scheme for reaction wheels desaturation on low-
orbit satellites. Instead, Furci et al. (2019) uses similar
results to implement a hierarchical control architecture
in an over-actuated hovercraft-like system. In particular,
the allocation scheme also handles nonlinearities in the
model. Fault Tolerance Control applications based on in-
put allocation are also proposed by Argha et al. (2019).
Lastly, it is essential to remark that input allocation has
been widely used in Nuclear Fusion research, specifically
in Tokamaks, exploiting the reactor coil redundancy to

⋆ This work has been partially supported by the Italian Ministry for
Research in the framework of the 2020 Program for Research Projects
of National Interest, Grant No. 2020RTWES4, and by EUROfusion
Consortium, Grant No. 101052200.

control plasma position and elongation safely. Refer to
Boncagni et al. (2011); Ambrosino et al. (2011); Esposito
et al. (2016) for more information. Input allocation was
first developed on LTI systems, where the input redun-
dancy property can be easily defined (Zaccarian (2009)).
Indeed, an LTI system can be non-, weakly, or strongly
redundant. As discussed in Galeani and Pettinari (2014),
and Cristofaro and Galeani (2014), the Allocator can be
designed as the cascade of a steady-state Optimizer and
an Annihilator. Using a static Annihilator, the difference
between weak and strong redundancy is that in the former,
output invisibility is ensured only at steady-state, while in
the latter, at any time. Output invisibility can also be
achieved for weakly redundant systems using a dynamic
Annihilator as discussed in Cristofaro and Galeani (2014).
Additional allocation techniques have been introduced in
Galeani et al. (2015) and Galeani and Sassano (2018b)
to handle the output-regulation problem on linear over-
actuated systems. The knowledge of the nominal plant
is often quite accurate at low frequencies rather than at
higher ones due to nonlinearities and time-varying effects.
The potential problem is that Allocator is designed on the
nominal plant. Thus, model uncertainties result in the loss
of the output invisibility property.
The main contribution of this paper is the design of

a dynamic allocation scheme that ensures robustness in
determining model uncertainties. A data-driven approach
to solve a similar problem has been introduced by Galeani
and Sassano (2018a). Instead, the proposed method relies
on optimization techniques where the output invisibility
is cast as a model-matching problem, and the model mis-
match is considered in the minimization goal.

A robust optimization approach for
dynamic input allocation ⋆

Alessandro Tenaglia ∗ Federico Oliva ∗ Mario Sassano ∗

Sergio Galeani ∗ Daniele Carnevale ∗

∗ Department of Civil Engineering and Computer Science
Engineering, University of Rome Tor Vergata, Rome, Italy (e-mail:

{alessandro.tenaglia, federico.oliva, mario.sassano,
sergio.galeani, daniele.carnevale}@uniroma2.it

Abstract: This paper addresses the problem of dynamic input allocation in the presence of plant
uncertainties. The current state of the art shows how to design an Allocator as the cascade of an
Optimizer and an Annihilator to achieve steady-state input optimality and output invisibility
simultaneously. This work proposes a novel algorithm based on polynomial factorization to
design a dynamic Annihilator. The critical aspect of this approach lies in the assumption of the
perfect plant knowledge, making the Annihilator not robust to uncertainties. A robustification
process is introduced by optimizing its design parameters. This approach is formulated as a
model-matching problem aiming to reduce the output mismatch induced by the allocation
scheme while maintaining steady-state optimality. As the numerical simulations highlight, this
method applies to linear and nonlinear allocation problems.

Keywords: Robust control applications, Uncertain systems, Input allocation, Parametric
optimization, Systems with saturation.

1. INTRODUCTION

When designing suitable control laws for a system, the
structure and the number of actuators play a crucial role
in the synthesis problem. Actuators can be selected de-
pending on power-related assumptions to increase robust-
ness through redundancy or to reach specific performance
(e.g., Hamandi et al. (2021)). Input allocation represents
a field of Control Theory that builds on top of a prede-
termined control law and exploits input redundancy of
the plant to maximize the actuator’s performance without
affecting the system output; such a condition is usually
defined as output invisibility. The actuator’s performance
is evaluated through a specific cost, e.g., total power con-
sumption, distance from saturation limits, or fast zero-
crossing. For a general review of the topic, the reader
may refer to Zaccarian (2009), and Johansen and Fossen
(2013). The set of potential applications is quite vast.
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control plasma position and elongation safely. Refer to
Boncagni et al. (2011); Ambrosino et al. (2011); Esposito
et al. (2016) for more information. Input allocation was
first developed on LTI systems, where the input redun-
dancy property can be easily defined (Zaccarian (2009)).
Indeed, an LTI system can be non-, weakly, or strongly
redundant. As discussed in Galeani and Pettinari (2014),
and Cristofaro and Galeani (2014), the Allocator can be
designed as the cascade of a steady-state Optimizer and
an Annihilator. Using a static Annihilator, the difference
between weak and strong redundancy is that in the former,
output invisibility is ensured only at steady-state, while in
the latter, at any time. Output invisibility can also be
achieved for weakly redundant systems using a dynamic
Annihilator as discussed in Cristofaro and Galeani (2014).
Additional allocation techniques have been introduced in
Galeani et al. (2015) and Galeani and Sassano (2018b)
to handle the output-regulation problem on linear over-
actuated systems. The knowledge of the nominal plant
is often quite accurate at low frequencies rather than at
higher ones due to nonlinearities and time-varying effects.
The potential problem is that Allocator is designed on the
nominal plant. Thus, model uncertainties result in the loss
of the output invisibility property.
The main contribution of this paper is the design of

a dynamic allocation scheme that ensures robustness in
determining model uncertainties. A data-driven approach
to solve a similar problem has been introduced by Galeani
and Sassano (2018a). Instead, the proposed method relies
on optimization techniques where the output invisibility
is cast as a model-matching problem, and the model mis-
match is considered in the minimization goal.

A robust optimization approach for
dynamic input allocation ⋆

Alessandro Tenaglia ∗ Federico Oliva ∗ Mario Sassano ∗

Sergio Galeani ∗ Daniele Carnevale ∗

∗ Department of Civil Engineering and Computer Science
Engineering, University of Rome Tor Vergata, Rome, Italy (e-mail:

{alessandro.tenaglia, federico.oliva, mario.sassano,
sergio.galeani, daniele.carnevale}@uniroma2.it

Abstract: This paper addresses the problem of dynamic input allocation in the presence of plant
uncertainties. The current state of the art shows how to design an Allocator as the cascade of an
Optimizer and an Annihilator to achieve steady-state input optimality and output invisibility
simultaneously. This work proposes a novel algorithm based on polynomial factorization to
design a dynamic Annihilator. The critical aspect of this approach lies in the assumption of the
perfect plant knowledge, making the Annihilator not robust to uncertainties. A robustification
process is introduced by optimizing its design parameters. This approach is formulated as a
model-matching problem aiming to reduce the output mismatch induced by the allocation
scheme while maintaining steady-state optimality. As the numerical simulations highlight, this
method applies to linear and nonlinear allocation problems.

Keywords: Robust control applications, Uncertain systems, Input allocation, Parametric
optimization, Systems with saturation.

1. INTRODUCTION
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in an over-actuated hovercraft-like system. In particular,
the allocation scheme also handles nonlinearities in the
model. Fault Tolerance Control applications based on in-
put allocation are also proposed by Argha et al. (2019).
Lastly, it is essential to remark that input allocation has
been widely used in Nuclear Fusion research, specifically
in Tokamaks, exploiting the reactor coil redundancy to
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dancy property can be easily defined (Zaccarian (2009)).
Indeed, an LTI system can be non-, weakly, or strongly
redundant. As discussed in Galeani and Pettinari (2014),
and Cristofaro and Galeani (2014), the Allocator can be
designed as the cascade of a steady-state Optimizer and
an Annihilator. Using a static Annihilator, the difference
between weak and strong redundancy is that in the former,
output invisibility is ensured only at steady-state, while in
the latter, at any time. Output invisibility can also be
achieved for weakly redundant systems using a dynamic
Annihilator as discussed in Cristofaro and Galeani (2014).
Additional allocation techniques have been introduced in
Galeani et al. (2015) and Galeani and Sassano (2018b)
to handle the output-regulation problem on linear over-
actuated systems. The knowledge of the nominal plant
is often quite accurate at low frequencies rather than at
higher ones due to nonlinearities and time-varying effects.
The potential problem is that Allocator is designed on the
nominal plant. Thus, model uncertainties result in the loss
of the output invisibility property.
The main contribution of this paper is the design of

a dynamic allocation scheme that ensures robustness in
determining model uncertainties. A data-driven approach
to solve a similar problem has been introduced by Galeani
and Sassano (2018a). Instead, the proposed method relies
on optimization techniques where the output invisibility
is cast as a model-matching problem, and the model mis-
match is considered in the minimization goal.

Fig. 1. The original closed-loop system Σ.

Novel contribution. The main novelties proposed in
this paper consist of the following:

• showing how a robust input Allocator allows to im-
prove performances in the presence of plant uncer-
tainties;

• providing an algorithm to design an Annihilator ;
• providing an algorithm to robustify an Allocator ;
• raising the issue of designing a robust input Allocator.
In fact, to the best of the authors’ knowledge, no
robust allocation techniques have been proposed yet.

The rest of the paper is organized as follows. Section 2
describes the problems of interest. In Section 3, input
allocation schemes are recalled, and a new algorithm is
proposed for the Allocator design. Section 4 defines the ro-
bust allocation procedure with the proposed optimization-
based solution. Lastly, Section 5 shows extensive numerical
results supporting the validity of the approach proposed
in Section 4, while Section 6 draws conclusions and future
research directions.

2. PROBLEM STATEMENT

Consider a finite set of Linear Time-Invariant (LTI)
systems P with cardinality |P| = N , where the trajectories
of each plant P ∈ P can be described as the output of the
standard state-space formulation

ẋ = Ax+Bu, (1a)

y = Cx+Du, (1b)

where x ∈ Rn is the plant state, u ∈ Rm is the plant
input, and y ∈ Rp is the plant output. We also assume
that the plant considered is fat, namely m > p. In the
analysis carried out in this work, one of the plants in P is
considered the nominal one P0, and referred to as

ẋ = A0x+B0u, (2a)

y = C0x+D0u. (2b)

Moreover, it is assumed that a robust controller C for the
set P in (1) is available, given by

ẋc = Acxc +Bcuc +Brr, (3a)

yc = Ccxc +Dcuc +Drr, (3b)

where xc ∈ Rnc is the controller state, uc ∈ Rp is the
controller input, r ∈ Rp is a constant reference signal and
yc ∈ Rm is the controller output. As far as stability is
concerned, the following assumption is considered valid
throughout the paper.

Assumption 1. The closed-loop system Σ in Fig. 1 given
by (1) and (3), with uc = y and u = yc, is well-posed and
asymptotically stable, for each P ∈ P.

The standard allocation problem consists of designing
an Allocator described as

Fig. 2. The allocated closed-loop system Σall.

ẋa = fa(xa, ua), (4a)

ya = ga(xa, ua), (4b)

where xa ∈ Rna is the allocator state, ua ∈ Rm is the
allocator input, and ya ∈ Rm is the allocator output, which
is connected to (1) and (3), as shown in Fig. 2, according
to the following

ua = yc, (5a)

u = yc + ya. (5b)

This system exploits the input redundancy of P to modify
the plant input u, optimizing a specific cost function
without altering the plant output y (Galeani and Pettinari
(2014)). In summary, the following general problem can be
defined.

Problem 1. (Nominal input allocation). Consider the nom-
inal closed-loop system Σ0, namely P = {P0}, and design,
if possible, an input Allocator such that the allocated
closed-loop system Σ0,all given by (2), (3), (4) and (5):

(AS) is well-posed and asymptotically stable;
(I) ensures output invisibility, namely, with the same

initial condition of P0, C and reference signal, the
output y of Σ0 and the output yall of Σ0,all coincide;

(O) ensures steady-state optimality, namely the steady-
state plant input u∞ = yc,∞ + ya,∞ satisfies:

J(u∞) = min
v∈UΣ0

J(v), (6)

where J is a cost function with domain on Rm and UΣ0

is the set of all admissible inputs v for the closed-loop
system Σ0.

In the case of no uncertainties, namely P = {P0}, then
an Allocator solving Problem 1 can be designed, e.g., as
shown in Galeani and Pettinari (2014), and Cristofaro
and Galeani (2014). However, when plant uncertainties are
considered, namely |P| = N > 1, the Allocator designed
only on P0 no longer ensures output invisibility (I) for
each P ∈ P. Hence, in this paper, we propose a design
procedure for a robust Allocator, redefining Problem 1 as
follows.

Problem 2. (Robust input allocation). Consider the closed-
loop system Σ and design, if possible, an input Allocator
such that for each P ∈ P the allocated closed-loop system
Σall given by (1), (3), (4) and (5):

(AS) is well-posed and asymptotically stable;
(NI) ensures output invisibility in the nominal case, i.e.,

item (I) of Problem 1;
(NO) ensures steady-state optimality in the nominal case,

i.e., item (O) of Problem 1;
(RIO) minimizes the cost function

J̃(Θ) =

N∑
i=1

(∫ T

0

∥δyi∥2 + αJ(uall,i(t))dt

)
, (7)
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Novel contribution. The main novelties proposed in
this paper consist of the following:

• showing how a robust input Allocator allows to im-
prove performances in the presence of plant uncer-
tainties;

• providing an algorithm to design an Annihilator ;
• providing an algorithm to robustify an Allocator ;
• raising the issue of designing a robust input Allocator.
In fact, to the best of the authors’ knowledge, no
robust allocation techniques have been proposed yet.

The rest of the paper is organized as follows. Section 2
describes the problems of interest. In Section 3, input
allocation schemes are recalled, and a new algorithm is
proposed for the Allocator design. Section 4 defines the ro-
bust allocation procedure with the proposed optimization-
based solution. Lastly, Section 5 shows extensive numerical
results supporting the validity of the approach proposed
in Section 4, while Section 6 draws conclusions and future
research directions.

2. PROBLEM STATEMENT

Consider a finite set of Linear Time-Invariant (LTI)
systems P with cardinality |P| = N , where the trajectories
of each plant P ∈ P can be described as the output of the
standard state-space formulation

ẋ = Ax+Bu, (1a)

y = Cx+Du, (1b)

where x ∈ Rn is the plant state, u ∈ Rm is the plant
input, and y ∈ Rp is the plant output. We also assume
that the plant considered is fat, namely m > p. In the
analysis carried out in this work, one of the plants in P is
considered the nominal one P0, and referred to as

ẋ = A0x+B0u, (2a)

y = C0x+D0u. (2b)

Moreover, it is assumed that a robust controller C for the
set P in (1) is available, given by

ẋc = Acxc +Bcuc +Brr, (3a)

yc = Ccxc +Dcuc +Drr, (3b)

where xc ∈ Rnc is the controller state, uc ∈ Rp is the
controller input, r ∈ Rp is a constant reference signal and
yc ∈ Rm is the controller output. As far as stability is
concerned, the following assumption is considered valid
throughout the paper.

Assumption 1. The closed-loop system Σ in Fig. 1 given
by (1) and (3), with uc = y and u = yc, is well-posed and
asymptotically stable, for each P ∈ P.

The standard allocation problem consists of designing
an Allocator described as

Fig. 2. The allocated closed-loop system Σall.
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ya = ga(xa, ua), (4b)

where xa ∈ Rna is the allocator state, ua ∈ Rm is the
allocator input, and ya ∈ Rm is the allocator output, which
is connected to (1) and (3), as shown in Fig. 2, according
to the following

ua = yc, (5a)

u = yc + ya. (5b)

This system exploits the input redundancy of P to modify
the plant input u, optimizing a specific cost function
without altering the plant output y (Galeani and Pettinari
(2014)). In summary, the following general problem can be
defined.

Problem 1. (Nominal input allocation). Consider the nom-
inal closed-loop system Σ0, namely P = {P0}, and design,
if possible, an input Allocator such that the allocated
closed-loop system Σ0,all given by (2), (3), (4) and (5):

(AS) is well-posed and asymptotically stable;
(I) ensures output invisibility, namely, with the same

initial condition of P0, C and reference signal, the
output y of Σ0 and the output yall of Σ0,all coincide;

(O) ensures steady-state optimality, namely the steady-
state plant input u∞ = yc,∞ + ya,∞ satisfies:

J(u∞) = min
v∈UΣ0

J(v), (6)

where J is a cost function with domain on Rm and UΣ0

is the set of all admissible inputs v for the closed-loop
system Σ0.

In the case of no uncertainties, namely P = {P0}, then
an Allocator solving Problem 1 can be designed, e.g., as
shown in Galeani and Pettinari (2014), and Cristofaro
and Galeani (2014). However, when plant uncertainties are
considered, namely |P| = N > 1, the Allocator designed
only on P0 no longer ensures output invisibility (I) for
each P ∈ P. Hence, in this paper, we propose a design
procedure for a robust Allocator, redefining Problem 1 as
follows.

Problem 2. (Robust input allocation). Consider the closed-
loop system Σ and design, if possible, an input Allocator
such that for each P ∈ P the allocated closed-loop system
Σall given by (1), (3), (4) and (5):

(AS) is well-posed and asymptotically stable;
(NI) ensures output invisibility in the nominal case, i.e.,

item (I) of Problem 1;
(NO) ensures steady-state optimality in the nominal case,

i.e., item (O) of Problem 1;
(RIO) minimizes the cost function

J̃(Θ) =

N∑
i=1

(∫ T

0

∥δyi∥2 + αJ(uall,i(t))dt

)
, (7)
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Fig. 3. The internal structure of the Allocator : a cascade
of a steady-state Optimizer and an Annihilator.

with respect to the Allocator’s set of design param-
eters Θ, defined in Section 3. In (7), T is the time
horizon considered, the subscript i refers to the tra-
jectories related to a Pi ∈ P, δyi(t) = yall,i(t) −
yi(t) is the output mismatch between the closed-loop
Σi and the corresponding allocated closed-loop Σall,i,
with the same initial condition of Pi, C and reference
signal. Furthermore, uall,i is the plant allocated input,
J is the cost function defining optimality in allocation
design, i.e., item (O) of Problem 1, and α > 0 is a
scaling factor. Equation (7) represents a suitable cost
function because it depends on the output mismatch
δyi and on (6).

3. ALLOCATOR DESIGN

We first proceed by designing an Allocator solving
Problem 1. Cristofaro and Galeani (2014), and Galeani and
Pettinari (2014) show that such an Allocator does exist
and has a general architecture represented by a cascade
of two systems, namely a steady-state Optimizer and an
Annihilator, as shown in Fig. 3. The Optimizer aims to
satisfy item (O) of Problem 1, while the Annihilator deals
with item (I). Thus, the design of the Allocator can be
performed in two steps: first, the design of the Annihilator
and then the design of the steady-state Optimizer.

3.1 Annihilator Design

In the literature, several algorithms have been pro-
posed to design an Annihilator ; for example, Cristofaro
and Galeani (2014) uses the Smith form of the plant
numerator, while Galeani and Sassano (2018a) exploits
the orthogonal moments of the plant. In this work, we
propose a novel and straightforward approach based on
polynomial factorization, providing a numerical procedure
for the design of an Annihilator starting from the state-
space representation of (2). The Annihilator is given by

ẋan = Aanxan +Banv, (8a)

yan = Canxan, (8b)

where xan ∈ Rnan is the annihilator state, v ∈ Rη is the
optimizer output, yan ∈ Rm is the annihilator output. We
refer to Wan(s) as the transfer function from v to yan.
Thus, denoting with

W0(s) = C0(sI −A0)
−1B0 +D0 (9)

the transfer function from u to y of P0 in (2), the item (I)
of Problem 1 is satisfied if

W0(s)Wan(s) = 0. (10)

Again, the Annihilator design aims to define Wan(s) to
ensure output invisibility with respect to P0. The first step
of the algorithm consists of computing a left polynomial
factorization of (9)

W0(s) = D−1(s)N(s), (11)

whereD(s) is a square nonsingular polynomial matrix, i.e.,
such that det(D(s)) is not identically zero, and N(s) is a
polynomial matrix as well, described by

N(s) = Nns
n +Nn−1s

n−1 + ...+N1s+N0, (12)

with Ni ∈ Rp×m.
Now, the (sI−A0)

−1 term in (9) can be computed using
the adjoint method, namely

(sI −A0)
−1 =

1

det(sI −A0)
adj(sI −A0). (13)

where det(sI −A0) and adj(sI −A0) are the determinant
and the adjoint matrix of sI −A0, respectively, described
by

det(sI −A0) ≜ sn + an−1s
n−1 + ...+ a1s+ a0, (14a)

adj(sI −A0) ≜ En−1s
n−1 + ...+ E1s+ E0. (14b)

with ai ∈ R and Ei ∈ Rn×n. Substituting (13) and (14)
in (11), the following relations are obtained

D(s) =
n∑

k=0

aks
k I, (15a)

N(s) =
n∑

k=0

(C0EkB0 + akD0)s
k. (15b)

The set of ak and Ek in (14) is computed using the
Souriau-Leverrier-Faddeev algorithm (Faddeev and Fad-
deeva (1981)), which we report here for completeness.

Define an ≜ 1, En ≜ 0n and E−1 ≜ 0n. The remaining
set of ai and Ei are computed recursively with

En−k = an−k+1In +A0En−k+1, k = 1, . . . n+ 1, (16a)

an−k = −1

k
tr(A0En−k), k = 1, . . . n, (16b)

where tr(·) is the trace operator.
The second step of the algorithm is to compute the Anni-
hilator transfer function Wan(s) satisfying (10), which is
represented by a right polynomial factorization, namely

Wan(s) = N⊥(s)Ψ−1(s) (17)

where Ψ(s) is a square and nonsingular polynomial matrix,
i.e., such that det(Ψ(s)) is not identically zero, and N⊥(s)
is a polynomial matrix as well, described by

N⊥(s) = N⊥
η sη +N⊥

η−1s
η−1 + ...+N⊥

1 s+N⊥
0 , (18)

with N⊥
i ∈ Rm×m−p and where we select η = n. To meet

(10), the following necessary and sufficient conditions must
be met,

N(s)N⊥(s) = 0, (19)

namely N⊥(s) needs to be a polynomial basis for the null
space of the polynomial matrix N(s). By substituting (12)
and (18) in (19), we obtain the following

(Nns
n + ...+N0)(N

⊥
η sη + ...+N⊥

0 ) = 0. (20)

By expanding the polynomial product and rearranging the
terms in a matrix form, (20) can be written as the product
of a band matrix N̄ and a matrix N̄⊥. N̄ is built up by
the coefficient matrices of N(s), while N̄⊥ is obtained by
stacking the coefficient matrices of N⊥(s):




N0 0 . . . 0
N1 N0 . . . 0
...

...
. . .

...
Nn Nn−1 · · · N0

...
. . .

...
...

0 . . . Nn Nn−1

0 . . . 0 Nn







N⊥
0

N⊥
1

...

N⊥
η−1

N⊥
η



= N̄N̄⊥ = 0. (21)

In this way, the Annihilator numerator can be obtained
simply by computing the null space of a band matrix and
choosing m− p vectors in the basis found.
The final step of the algorithm is to define the invertible
polynomial matrix Ψ(s) in (17) to have a stable and
realizableWan(s). This can be achieved by simply choosing
Ψ(s) = ψ(s)Im−p, where Im−p is the identity matrix
of order m − p and ψ(s) any Hurwitz polynomial with
deg(ψ(s)) > η. Therefore, the choice of denominator
represents a degree of freedom that can be used to achieve
better performance for the Allocator ; this aspect will
be further investigated in Section 4. In summary, an
Annihilator can be designed following the subsequent
algorithm.

Algorithm 1. Annihilator design

• Compute a left polynomial factorization D−1(s)N(s)
of (9) using (15) and (16).

• Compute the null space of N̄ in (21) and defineN⊥(s)
rearranging the solution in a polynomial form as in
(18).

• Choose a Hurwitz polynomial ψ(s) with deg(ψ(s)) >
η, and define Ψ(s) = ψ(s)Im−p.

• Define the Annihilator for (1) as any minimal real-
ization of Wan(s) = N⊥(s)Ψ−1(s).

3.2 Optimizer Design

The overall Allocator design is completed by selecting
a suitable steady-state Optimizer, in line with Fig. 3,
as shown in Galeani and Pettinari (2014). Remembering
that the goal of the Optimizer is to achieve item (O) of
Problem 1, a gradient law on the desired cost function
J(u∞) can be used, so the Optimizer is defined by

ẋop = −Γ∇J(yc +Ωanxop), (22a)

v = xop, (22b)

where xop ∈ Rm−p is the optimizer state, v ∈ Rm−p is
the optimizer output, and Ωan = Wan(0). Lastly, Γ ∈
Rm−p×m−p, Γ > 0 is a suitable matrix that regulates the
convergence rate. Γ is an additional degree of freedom that
can be exploited in the construction of the Allocator, which
is considered in the Section 4.

4. ROBUST ALLOCATOR DESIGN

The Allocator design described in Section 3 successfully
solves Problem 1. However, this work aims to solve the
robust input allocation problem, i.e., Problem 2. Indeed,
the procedure described in Section 3 provides an Allocator
structurally designed to obtain output invisibility on P0.
However, if that Allocator is implemented on any P ∈ P,
in general, the output invisibility property is lost; namely,
a mismatch exists between the original and the allocated
outputs.

The core idea is to formulate Problem 2 as a model-
matching problem (MMP) between the non-allocated and
allocated closed-loop systems, finding an opportune selec-
tion of the Allocator parameters introduced in Section 3 to
achieve item (RIO). A possible way to solve such a problem
would use the design parameters to define a static state-
feedback for the Allocator. On top of this, several goals
could be addressed, such as an H∞ MMP, which can be
solved using the linear matrix inequality (LMI) optimiza-
tion, but limiting its applicability to linear systems only.

The method proposed defines an optimization-based
procedure to robustify a dynamic allocation scheme con-
cerning plant uncertainties. From Section 3, the Annihi-
lator denominator ψ(s) and the Optimizer gain matrix Γ
can be considered as design parameters of the Allocator.
Therefore, we define the following minimization problem
to achieve item (RIO) of Problem 2:

min
Γ,ψ

N
i=1

 T

0

∥δyi∥2 + αJ(uall,i(t))dt



s.t. Γ = diag(γ1, . . . γm−p) > 0,

ψ(s) is Hurwitz with deg(ψ(s)) = η + 1.

(23)

ψ(s) and Γ are constrained to have a specific structure.
First, the gain matrix Γ is assumed to be diagonal, namely
Γ = diag(γ1, . . . γm−p) > 0. Regarding the Annihilator
transfer function denominator ψ(s), it is assumed to be
ψ(s) = sη+1 + ψηs

η + ...+ ψ1s+ ψ0. The only precaution
to consider is constraining ψ0 = 1. This is done to keep the
Annihilator static gain Ωan = N⊥

0 /ψ0 fixed. If this were
not the case, the structure of ∇J would change. Instead,
by varying Γ, only the gradient descent rate is affected in
the Optimizer. It is worth pointing out that the properties
(e.g., convexity) of (23) are not known a priori, thus its
solution is agnostic to the optimization algorithm’s choice.

Algorithm 2. Allocator optimization

• Design the dynamic Annihilator following Algo-
rithm 1;

• Design the steady-state Optimizer as in (22), choos-
ing the cost function to be minimized (6) and Γ
according to a suitable convergence rate;

• Solve the optimization problem defined in (23), using
Γ and ψ(s) previously chosen as the initial condition
of the numerical solver;

• Define the robust Allocator as the cascade of the
Optimizer and the Annihilator using the optimal
value found.

5. NUMERICAL SIMULATION

This section supports the results previously presented
through numerical simulations on an example model. More
specifically, the plant and controller are taken from Za-
ccarian (2009) and reported here for completeness. The
nominal plant P0 in (2) is described by the matrices

A0 =


−0.157 0.094
−0.416 0.45


, B0 =


0.87 0.253 0.743
0.39 0.354 0.65


, (24a)

C0 = [0 1] , D0 = [0 0 0] , (24b)

while the controller C in (3) by
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N0 0 . . . 0
N1 N0 . . . 0
...

...
. . .

...
Nn Nn−1 · · · N0

...
. . .

...
...

0 . . . Nn Nn−1

0 . . . 0 Nn







N⊥
0

N⊥
1

...

N⊥
η−1

N⊥
η



= N̄N̄⊥ = 0. (21)

In this way, the Annihilator numerator can be obtained
simply by computing the null space of a band matrix and
choosing m− p vectors in the basis found.
The final step of the algorithm is to define the invertible
polynomial matrix Ψ(s) in (17) to have a stable and
realizableWan(s). This can be achieved by simply choosing
Ψ(s) = ψ(s)Im−p, where Im−p is the identity matrix
of order m − p and ψ(s) any Hurwitz polynomial with
deg(ψ(s)) > η. Therefore, the choice of denominator
represents a degree of freedom that can be used to achieve
better performance for the Allocator ; this aspect will
be further investigated in Section 4. In summary, an
Annihilator can be designed following the subsequent
algorithm.

Algorithm 1. Annihilator design

• Compute a left polynomial factorization D−1(s)N(s)
of (9) using (15) and (16).

• Compute the null space of N̄ in (21) and defineN⊥(s)
rearranging the solution in a polynomial form as in
(18).

• Choose a Hurwitz polynomial ψ(s) with deg(ψ(s)) >
η, and define Ψ(s) = ψ(s)Im−p.

• Define the Annihilator for (1) as any minimal real-
ization of Wan(s) = N⊥(s)Ψ−1(s).

3.2 Optimizer Design

The overall Allocator design is completed by selecting
a suitable steady-state Optimizer, in line with Fig. 3,
as shown in Galeani and Pettinari (2014). Remembering
that the goal of the Optimizer is to achieve item (O) of
Problem 1, a gradient law on the desired cost function
J(u∞) can be used, so the Optimizer is defined by

ẋop = −Γ∇J(yc +Ωanxop), (22a)

v = xop, (22b)

where xop ∈ Rm−p is the optimizer state, v ∈ Rm−p is
the optimizer output, and Ωan = Wan(0). Lastly, Γ ∈
Rm−p×m−p, Γ > 0 is a suitable matrix that regulates the
convergence rate. Γ is an additional degree of freedom that
can be exploited in the construction of the Allocator, which
is considered in the Section 4.

4. ROBUST ALLOCATOR DESIGN

The Allocator design described in Section 3 successfully
solves Problem 1. However, this work aims to solve the
robust input allocation problem, i.e., Problem 2. Indeed,
the procedure described in Section 3 provides an Allocator
structurally designed to obtain output invisibility on P0.
However, if that Allocator is implemented on any P ∈ P,
in general, the output invisibility property is lost; namely,
a mismatch exists between the original and the allocated
outputs.

The core idea is to formulate Problem 2 as a model-
matching problem (MMP) between the non-allocated and
allocated closed-loop systems, finding an opportune selec-
tion of the Allocator parameters introduced in Section 3 to
achieve item (RIO). A possible way to solve such a problem
would use the design parameters to define a static state-
feedback for the Allocator. On top of this, several goals
could be addressed, such as an H∞ MMP, which can be
solved using the linear matrix inequality (LMI) optimiza-
tion, but limiting its applicability to linear systems only.

The method proposed defines an optimization-based
procedure to robustify a dynamic allocation scheme con-
cerning plant uncertainties. From Section 3, the Annihi-
lator denominator ψ(s) and the Optimizer gain matrix Γ
can be considered as design parameters of the Allocator.
Therefore, we define the following minimization problem
to achieve item (RIO) of Problem 2:

min
Γ,ψ

N
i=1

 T

0

∥δyi∥2 + αJ(uall,i(t))dt



s.t. Γ = diag(γ1, . . . γm−p) > 0,

ψ(s) is Hurwitz with deg(ψ(s)) = η + 1.

(23)

ψ(s) and Γ are constrained to have a specific structure.
First, the gain matrix Γ is assumed to be diagonal, namely
Γ = diag(γ1, . . . γm−p) > 0. Regarding the Annihilator
transfer function denominator ψ(s), it is assumed to be
ψ(s) = sη+1 + ψηs

η + ...+ ψ1s+ ψ0. The only precaution
to consider is constraining ψ0 = 1. This is done to keep the
Annihilator static gain Ωan = N⊥

0 /ψ0 fixed. If this were
not the case, the structure of ∇J would change. Instead,
by varying Γ, only the gradient descent rate is affected in
the Optimizer. It is worth pointing out that the properties
(e.g., convexity) of (23) are not known a priori, thus its
solution is agnostic to the optimization algorithm’s choice.

Algorithm 2. Allocator optimization

• Design the dynamic Annihilator following Algo-
rithm 1;

• Design the steady-state Optimizer as in (22), choos-
ing the cost function to be minimized (6) and Γ
according to a suitable convergence rate;

• Solve the optimization problem defined in (23), using
Γ and ψ(s) previously chosen as the initial condition
of the numerical solver;

• Define the robust Allocator as the cascade of the
Optimizer and the Annihilator using the optimal
value found.

5. NUMERICAL SIMULATION

This section supports the results previously presented
through numerical simulations on an example model. More
specifically, the plant and controller are taken from Za-
ccarian (2009) and reported here for completeness. The
nominal plant P0 in (2) is described by the matrices

A0 =


−0.157 0.094
−0.416 0.45


, B0 =


0.87 0.253 0.743
0.39 0.354 0.65


, (24a)

C0 = [0 1] , D0 = [0 0 0] , (24b)

while the controller C in (3) by
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Fig. 4. Output variation δy(t) of the closed loop system
with a non-optimized Allocator (dashed), and with
the optimized Allocator (solid), with respect to the
original closed-loop system; in blue the signals of the
nominal plant and in red the signals of a perturbed
plant.
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Fig. 5. Control inputs ui of the closed-loop system without
Allocator (dotted), with a non-optimized Allocator
(dashed), and with the optimized Allocator (solid);
in blue the signals of the nominal plant and in red the
signals of a perturbed plant.

Ac =



−1.57 0.5767 0.822 −0.65
−0.9 −0.501 −0.94 0.802
0 1 −1.61 1.614
0 0 0 0


 , Br =



0
0
0
1


 (25a)

Cc =


1.81 −1.2 −0.46 0
−0.62 1.47 0.89 0

0 0 0 0


, Dr =


0
0
0


, (25b)

with Bc = −Br, Dc = −Dr, satisfying Assumption 1. The
set P considered has cardinality |P| = N = 10, where
each plant P ∈ P with P ̸= P0 is obtained by perturbing
all elements of the nominal plant matrices (A0, B0) by 10
percent simultaneously.
As described in Section 3, the inputAllocator is designed

as the cascade of an Optimizer and an Annihilator. Fol-
lowing Algorithm 1, the dynamic Annihilator is calculated
based on the nominal plant (24) by choosing a numerator
of degree η = n = 2 and as denominator a Hurwitz
polynomial of degree η + 1 = 3. The structure of the
Optimizer is defined successively according to the cost
function to be minimized, with an initial gain matrix equal
to Im−p. The optimization process is performed following
Algorithm 2 on the set P. More specifically, linear and
nonlinear allocation problems are addressed.

Linear allocation The first simulation focuses on
reducing the steady-state Euclidean norm of the plant
input u∞, namely designing an Allocator to minimize the
quadratic cost function described by

J(u∞) =
1

2
∥u∞∥2. (26)

This cost function defines a linear allocation problem, since
substituting the gradient of (26) in (22) the Optimizer
dynamics are described by

ẋop = −ΓΩT
anΩanxop − ΓΩT

anyc, (27a)

v = xop. (27b)

Figs. 4 and 5 show how the non-optimized Allocator
solves the Problem 1 on the nominal plant but (I) fails
on a perturbed one. After the optimization process, the
performance on the nominal case is preserved, and the
output mismatch is improved on the perturbed case. In
particular, Fig. 4 shows that, in the nominal case, the
output of the closed-loop system is identical for both the
non-optimized and optimized Allocator. In contrast, in the
perturbed case, the output invisibility is lost. Indeed, a
non-negligible mismatch between the allocated and non-
allocated trajectories is significantly reduced after opti-
mization. Fig. 5 shows how, in both cases, the Allocator
modifies the original plant input to converge to the optimal
steady-state value minimizing (26).

Nonlinear allocation The second simulation con-
siders the problem of keeping the steady-state value of
the plant input u∞ away from a soft-saturation region,
namely designing an Allocator to minimize the nonlinear
cost function described by

J(u∞) =
1

2
∥dz(u∞)∥2, (28)

where dz(ui,∞) = sign(ui,∞)max{0, |ui,∞| − ūi}, with
ūi the i-th saturation amplitude bound. This defines
a nonlinear allocation problem, since substituting the
gradient of (28) in (22) the Optimizer is represented by

ẋop = −ΓΩT
andz(yc +Ωanxop), (29a)

v = xop, (29b)

Figs. 6 and 7 confirm that the optimized allocator improves
the output mismatch while maintaining the optimality
of the plant input at steady-state. Hence, the proposed
approach is valid even in the nonlinear case.
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Fig. 6. Output variation δy(t) of the closed loop system
with a non-optimized Allocator (dashed), and with
the optimized Allocator (solid), with respect to the
original closed-loop system; in blue the signals of the
nominal plant and in red the signals of a perturbed
plant.
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Fig. 7. Control inputs ui of the closed-loop system without
Allocator (dotted), with a non-optimized Allocator
(dashed), and with the optimized Allocator (solid); in
blue the signals of the nominal plant, in red the signals
of a perturbed plant, and in yellow the saturation
bounds ū.

6. CONCLUSION

This paper introduces the problem of dynamic input
allocation in the presence of plant uncertainties. We pro-
vide a procedure to design a robust Allocator to address

plant uncertainties, applicable for linear and nonlinear
Optimizer dynamics (22). Such an approach relies on
numerical optimization methods to exploit the Allocator
design parameters. Furthermore, a novel numerical receipt
is proposed to design a dynamic Annihilator based on
polynomial factorization algorithm 1. Numerical simula-
tions confirm the effectiveness of this method, both on
linear and nonlinear robust allocation problems. Future
developments will consider a relaxation of the constraints
in (23) on the Optimizer and Annihilator dynamics to
improve the output invisibility property further.
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Fig. 6. Output variation δy(t) of the closed loop system
with a non-optimized Allocator (dashed), and with
the optimized Allocator (solid), with respect to the
original closed-loop system; in blue the signals of the
nominal plant and in red the signals of a perturbed
plant.
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Fig. 7. Control inputs ui of the closed-loop system without
Allocator (dotted), with a non-optimized Allocator
(dashed), and with the optimized Allocator (solid); in
blue the signals of the nominal plant, in red the signals
of a perturbed plant, and in yellow the saturation
bounds ū.

6. CONCLUSION

This paper introduces the problem of dynamic input
allocation in the presence of plant uncertainties. We pro-
vide a procedure to design a robust Allocator to address

plant uncertainties, applicable for linear and nonlinear
Optimizer dynamics (22). Such an approach relies on
numerical optimization methods to exploit the Allocator
design parameters. Furthermore, a novel numerical receipt
is proposed to design a dynamic Annihilator based on
polynomial factorization algorithm 1. Numerical simula-
tions confirm the effectiveness of this method, both on
linear and nonlinear robust allocation problems. Future
developments will consider a relaxation of the constraints
in (23) on the Optimizer and Annihilator dynamics to
improve the output invisibility property further.
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