
Received: 8 December 2022 - Revised: 26 January 2023 - Accepted: 2 February 2023 - IET Cyber‐Systems and Robotics
DOI: 10.1049/csy2.12083

OR I G INAL RE SEARCH

A novel distributed architecture for unmanned aircraft systems
based on Robot Operating System 2

Lorenzo Bianchi | Daniele Carnevale | Fabio Del Frate | Roberto Masocco |
Simone Mattogno | Fabrizio Romanelli | Alessandro Tenaglia

Department of Civil Engineering and Computer
Science Engineering, University of Rome “Tor
Vergata”, Rome, Italy

Correspondence

Fabrizio Romanelli.
Email: fabrizio.romanelli@uniroma2.it

Funding information

Ministero dell'Università e della Ricerca, Grant/
Award Numbers: 2017YKXYXJ, 2020RTWES4

Abstract
A novel distributed control architecture for unmanned aircraft system (UASs) based on the
new Robot Operating System (ROS) 2 middleware is proposed, endowed with industrial‐
grade tools that establish a novel standard for high‐reliability distributed systems. The
architecture has been developed for an autonomous quadcopter to design an inclusive
solution ranging from low‐level sensor management and soft real‐time operating system
setup and tuning to perception, exploration, and navigation modules orchestrated by a
finite‐state machine. The architecture proposed in this study builds on ROS 2 with its
scalability and soft real‐time communication functionalities, while including security and
safety features, optimised implementations of localisation algorithms, and integrating an
innovative and flexible path planner for UASs. Finally, experimental results have been
collected during tests carried out both in the laboratory and in a realistic environment,
showing the effectiveness of the proposed architecture in terms of reliability, scalability, and
flexibility.

KEYWORD S
navigation, robot perception, slam (robots), unmanned aerial vehicle

1 | INTRODUCTION

Robotic systems are complex interconnections of actuators and
sensors on a mechanical structure with electronic devices
managed by dedicated software. A robot needs both a hard-
ware platform designed to perform tasks and a complex
software architecture that embeds algorithms that allow it to
act, possibly, autonomously. In the past, while designing a
robot, developers often considered a single onboard computer
to act as a data processing unit and supervisor, without
focussing much on the software architecture driving it all.
Robotics software architectures [1] strive to contain many
complex systems by providing established development
structures, guiding developers towards maintainable and robust
software solutions that also facilitate construction starting
from existing building blocks. The design of such complex
tools is a crucial challenge for both developers and roboticists
[2]. A key strategy to create an effective robot software ar-
chitecture consists of identifying abstractions that allow us to

deal with groups of components in similar ways. Along with
this strategy, the need for modularity arises from the hetero-
geneity of the functions and algorithms running in parallel in a
robot system [3]. In particular, both abstraction and modu-
larity, together with the use of multiple processing units, lead to
a distributed system within a single robot [4]. Real‐time con-
straints, which are mandatory in some robotic platforms, are
often not satisfied for distributed systems; see for example,
Refs [5–7].

To address these limitations, a standard distributed
framework for the development of robotic software, also called
middleware [8], is necessary. Robot Operating System (ROS)
[9] is a set of tools and libraries for developing modular robotic
functions that interact with each other and communicate in a
distributed multiprocess environment [10]. ROS is also
equipped with a set of tools to manage software builds and
deployment, as well as development and testing. However,
ROS does not satisfy real‐time constraints and does not
guarantee compliance with deadlines, process synchronisation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2023 The Authors. IET Cyber‐Systems and Robotics published by John Wiley & Sons Ltd on behalf of Zhejiang University Press.

IET Cyber‐Syst. Robot. 2023;e12083. wileyonlinelibrary.com/journal/csy2 - 1 of 15
https://doi.org/10.1049/csy2.12083

https://doi.org/10.1049/csy2.12083
https://orcid.org/0000-0002-1888-7004
mailto:fabrizio.romanelli@uniroma2.it
https://orcid.org/0000-0002-1888-7004
https://ietresearch.onlinelibrary.wiley.com/journal/26316315
https://doi.org/10.1049/csy2.12083
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fcsy2.12083&domain=pdf&date_stamp=2023-03-02

and is not natively fault‐tolerant. The limitations mentioned
above lead to the conclusion that ROS is not suitable for real‐
time embedded applications. Such limitations have motivated
the robotics community to propose ROS 2 [11]. The second
version considers new use cases: cross‐platform, soft real‐time
systems, small embedded platforms, and lossy networks. To
satisfy soft real‐time requirements, it has been redesigned to
improve Application Programing Interfaces (APIs) and
incorporate new communication middleware technologies such
as Data Distribution Services (DDS) [12, 13], WebSockets and
ZeroMQ. In ROS 2, the DDS has superseded the ROS custom
transport system [14], introducing an end‐to‐end middleware
as an industry standard communication system. The DDS
provides reliable publish/subscribe transport that has been
made available at several levels, allowing the developer to use
various Quality of Service (QoS) configurations (e.g., deadlines,
reliability, and durability) and ensure scalability. Furthermore,
depending on the implementation, DDS can provide solutions
for real‐time environments and meet the safety, security, scal-
ability, and fault tolerance requirements in distributed systems.

In this article, we describe a distributed architecture for
modular robotic systems based on ROS 2. According to Ref.
[15], the usage of ROS 2 and DDS should be subject to extra
time costs to convert application messages to meet DDS
standards, which should be a huge limitation for both scal-
ability and communication capabilities. This problem is dis-
cussed and addressed below, essentially showing how the
application context of tools such as ROS 2 and the DDS does
not suffer from such limitations. Furthermore, the architecture
presented here supports security requirements such as
authentication, access control, and cryptographic operations,
intrinsically shipped with the DDS; reaching the same level of
security within a ROS context is still a matter of study [16]. The
architecture is designed for an autonomous quadcopter that
has been developed for the 2021 Edition of the Leonardo
Drone Contest, a robotics competition hosted by Leonardo S.
p.A. in which custom‐built unmanned aircraft system (UASs)
have to perform a series of complex tasks autonomously. Such
tasks range from localisation and flight control to environment
mapping and autonomous navigation.

Novel contributions. There are multiple innovative con-
tributions in this study. After the problem of designing a
complex, distributed robotics architecture is discussed and new
tools aimed at its solution are introduced, such tools are applied
to the design and realisation of the architecture of an autono-
mous UAS, showing and evaluating their effectiveness and
reliability in a real scenario, which also fits within a specific and
active field of research. Finally, some modules that constitute
such architecture represent novel contributions within their
respective application scopes: the design and implementation of
a flexible path planning algorithm and the application and
evaluation of a Visual‐SLAM system, both on an UAS platform
built on a modular, distributed control framework, and
embedded hardware.

The article is organised as follows. Section 2 presents the
current state of the art in distributed robotic architectures,
focussing on middleware such as ROS 2. Section 3 describes

the implementation of this new conceptual model in an
autonomous quadcopter, focussing on the design of both the
architecture and the modules. Section 4 shows some experi-
mental results, and concluding remarks are drawn in Section 5,
highlighting the main features of the new framework.

2 | RELATED WORK

Autonomous systems are currently establishing an increasingly
important presence. As humans, we rely on many aspects of
our lives on the help offered by various kinds of such systems,
and the variety of tasks for which they are designed is getting
wider each day. Moreover, they are often expected to deal with
tasks that require little or no input from a human operator,
processing large amounts of data. The new challenges posed by
their development can be overcome by implementing efficient
hardware and software architectures, which would allow such
systems to communicate easily when required and would assist
the robotics developer during all stages of design and imple-
mentation. It also appears intuitive how such architectures
should embed modules divided among different levels: lower
ones, intrinsically coupled to the machine being operated, and
upper ones which include supervision logics, data analysis al-
gorithms, communication schemes, and human interaction
capabilities. They would also help with the problems arising
from the need to connect different systems in order to
perform collaborative tasks or share information over a
network, which is a scenario that may become the norm in the
near future. This set of problems has gained much interest in
the past 10 years, in part because of the recent availability of
the computational power required to tackle them. Robotics and
control theory fall under the subject of distributed control. A
survey can be found in Ref. [17], and a summary focussing on
mobile robots could be found in Ref. [18].

A possible set of tools for this job is introduced in this
section, which are the fundamental building blocks of the
application example described in Section 3. As clarified from
both the following description and the practical example, such
tools actually solve the problems of interest presented here.

2.1 | The DDS

A recurring choice in designing robots, drones, and autono-
mous systems in general is to equip them with relatively
powerful on‐board electronics to handle different tasks. Today,
very complex embedded systems are available as full Systems‐
on‐Chips (SoCs) ready to be integrated and easily programed.
Depending on the complexity of the system itself, there could
be many of them. It is usual to delegate low‐level control al-
gorithms and operations to small, real‐time SoCs, while higher‐
level logics and computationally heavier tasks are executed on
more general‐purpose and powerful systems. Therefore, the
problem of easily establishing a connection between them
immediately arises. Communication in particular is a recurring
problem in the design of robots: The situation in which one

2 of 15 - BIANCHI ET AL.

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

has to establish data transmissions between different hosts is
often dealt with in various ways each time. This is one of many
critical issues that a developer always has to face and solve
rather than focus on the actual development of the core
functionalities of the system. These issues can now be solved
by employing the full potential of small general‐purpose
computers embedded in autonomous systems.

Figure 1 shows the classical organisation of the software
installed on a general‐purpose computer, taken from Ref. [19].
The inverted pyramid analogy exemplifies how it all relies on
tools such as compilers and assemblers. Then the architecture
starts with what we can identify as an operating system and a
set of device drivers and system APIs, ending with common
application software at the upper level. There is an interme-
diate level that could play a pivotal role in the aforementioned
purposes: The middleware, a category of software that offers
additional services to those made available by the operating
system.

If the end goal is to easily develop and deploy a control
architecture distributed among many systems connected to a
network, then one kind of middleware could be very useful:
DDS. A DDS is a publish‐subscribe middleware that handles
communications and data transmissions between real‐time
systems. Its definition follows an open standard, redacted by
the Object Management Group consortium; the latest version
can be found in Refs [20, 21]. The main services offered by a
DDS are as follows:

� transparent serialisation and deserialisation of data packets;
� possibility to easily define custom data packet formats,

named interfaces;
� enforcement of QoS policies between transmissions, carried

out on channels named topics;
� automatic network discovery and configuration.

The DDS represents a solution to the problem of efficient
interprocess communication among many software and hard-
ware modules, giving the resulting architecture a natively
distributed organisation.

2.2 | The ROS 2 robotics middleware

In 2007, Willow Garage, a spin‐off of the Stanford Artificial
Intelligence Laboratory, released an open‐source middleware
geared to robotics applications named ROS. Since then, ROS
has become widely adopted in the robotics industry, with
hundreds of software packages created by the community.
From an architectural point of view, ROS enables the robotic
software developer to package it in different modules, each
capable of communicating with the others using specific event‐
driven semantics, eventually over a network.

The aim of ROS 2, as explained in Refs [22, 23], is to
improve on that basis by relying almost entirely on an un-
derlying DDS. This simplifies many aspects of the network of
ROS 2‐enabled applications that can be created and drasti-
cally automates configuration. Moreover, it offers additional
client‐server communication abstractions that are still based
on the DDS layer. Inside a ROS 2 application, the entry
point to the DDS layer is usually an object called node. It is
generally described as an operating unit that executes jobs on
the system in which it resides, although this is not always the
case: At the very heart, a node is a data structure meant to
hold other objects needed to interact with the DDS and ROS
2 services. The application code can simply access the node
while doing its job, the jobs can be entirely coded inside
callbacks handled by the event‐based ROS 2 schedulers, or a
mixture of both could be employed. Equally important fea-
tures of ROS 2 range from the management of software
configuration parameters to that of startup and shutdown
configurations.

The best feature of ROS 2 is how it can ease the devel-
opment and deployment of distributed control architectures by
default, automating much of the setup and making commu-
nications satisfy QoS requirements. All that is needed is an
Internet Protocol network.

2.3 | Overall architecture performance

In this section, a survey on the performance evaluation of
robotic communication middleware is presented (see the work
in Refs [15, 24] for further references).

ROS implementations do not support priority and syn-
chronisation among nodes. Therefore, ROS cannot be
considered an appropriate platform for multi‐tasking envi-
ronments in real‐time. A priority‐based message transmission
mechanism has been presented to reduce the execution time
and the time variance of high‐priority ROS nodes and a syn-
chronisation mechanism to harmonise multiple ROS nodes
running at different frequencies [25]. ROS 2 overcomes several
limitations of ROS, but as communication middleware, it in-
troduces communication latency caused by message (de)seri-
alisation, (de)conversion, and transport, as illustrated in
extensive work [26]. To satisfy the requirements of the un-
derlying DDS, (de)conversion is a required process that is used
to transform messages from the application layer to the DDSF I GURE 1 Software organisation in a general‐purpose system.

BIANCHI ET AL. - 3 of 15

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

layer. This process has been identified as responsible for most
of the middleware time cost (89.1% when handling multidi-
mensional arrays with different data types). Furthermore, the
time cost of (de)conversion is linearly dependent on the
complexity of the message data structure.

The performances of ROS and ROS 2 have been
compared in terms of throughput, end‐to‐end latency, memory
consumption, and number of threads in Ref. [14]. In this work,
intra‐process and interprocess communication in a single‐
machine and two‐machine Ethernet network has been evalu-
ated. In particular, different DDS implementations (such as
FastRTPS, Connext, and OpenSplice) have been considered
together with different QoS policies.

In the proposed architecture, a set of good practices have
been implemented in order to reduce the overhead of the DDS
layer. Specifically:

� the usage of multidimensional arrays with different data
types has been avoided in order to reduce the
(de)conversion overhead, thus reducing the latency of the
DDS layer;

� the message data structure has been kept as simple as
possible on all topics;

� the QoS policies have been selected in order to better fit the
latency needs of the various applications, according to the
studies summarised in Ref. [14].

It has been observed that a ROS 2‐based architecture
provides more robust network connectivity and better scal-
ability with respect to the network size. At the same time,
ROS 2 allows robotic applications to be modular and
extendable; however, this comes with an extra time cost
because of the (de)conversion of application and DDS
messages. Even with a proper setup of the DDS communi-
cation infrastructure, as stated in the previous points, the
performances, in terms of time cost, of the presented ar-
chitecture can be assessed as being slower than those of an
implementation without a DDS layer, as expected, but this
does not substantially compromise the performances needed
in the presented application context. The actual systems that
make up the main target of ROS 2 and the DDS, as illus-
trated in Section 2, usually have enough resources to make
such performance hit negligible under nominal conditions, as
the case study in Section 3 shows.

3 | APPLICATION TO AN
AUTONOMOUS QUADCOPTER

In Section 2, the DDS and ROS 2 middleware were intro-
duced as powerful tools enabling developers to easily craft
and deploy sets of applications finalised to the execution of
multiple tasks in an autonomous system. To grasp not only
this ease but also the intrinsic modularity and hierarchical
structuring that can be achieved, a specific use case is pre-
sented in the current section.

3.1 | Multi‐level design of an autonomous
quadcopter

The authors, part of the University of Rome ‘Tor Vergata’
team, took part in the 2021 edition of the Leonardo Drone
Contest hosted by Leonardo in Turin, Italy, in September 2021.
In this competition, six Italian universities deployed their
drones to complete a complex mission. The drones had to fly
in a delimited indoor field in which many different obstacles,
10 landing pads, and three mobile robots were placed. The
resulting field configuration was made known to all partici-
pants as part of the rules, and the landing pads were delimited
by visual markers. The tasks each drone had to perform were
as follows:

1. Take‐off from a given pad.
2. Explore the environment to locate one of the three mobile

robots on the ground.
3. Take pictures of the robot and send them to an operator,

who will then transmit a sequence of landings to perform
on the pads.

4. Navigate from pad to pad, landing on each and then taking
off again until the sequence is completed.

The operator was allowed to use a personal computer (PC),
named the Ground Control Station (GCS), to start the mission
and monitor the drone. The sequence of landings had to be
decided in order to maximise a score, given by the sum of all
the points assigned to each of the pads upon which a suc-
cessful landing was performed. The distribution of points
among the different pads was printed on the robot that had to
be found on the ground. A series of design limitations were
also enforced for all teams: It was not possible to use any type
of Global Navigation Satellite System platform, and the use of
Light Detection and Ranging sensors was also forbidden,
together with the placement of any type of fixed sensor or
motion capture system on the ground.

In order to make each of these operations possible, a proper
software architecture has been designed and implemented on
sophisticated hardware. According to the specifications set
above, an autonomous quadcopter that solves the Leonardo
Drone Contest 2021 mission qualifies as a system whose
complexity requires, and represents a suitable test framework
for the tools introduced in Section 2. On both the hardware and
the software side, tasks have been split between multiple levels,
which also accounts for the different critical issues they pose.
Figure 2 shows the resulting organisation of the various soft-
ware modules among different functional layers. The three rows
host different kinds of packages: the lowest row is made of soft
real‐time modules that are fundamental for the execution of all
flight operations; the middle row hosts higher‐level, slower al-
gorithms that execute each of the mission tasks; and the highest
row is for the supervision logic, implemented as a Finite‐State
Machine (FSM) and the GCS. The aim of this organisation
was to arrive at a set of ROS 2 modules that performed each
task, relying on the functionality offered by the other modules.

4 of 15 - BIANCHI ET AL.

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

This enables higher levels to not care about how basic opera-
tions (e.g., take‐off, landing, and turns) are performed, since
they are fully abstracted.

3.2 | Low level design

The division in functional layers had to be reflected in the
hardware because of the very different levels of criticality of
the various operations: for example, relatively fast tracking
algorithms and slow supervision logics had to coexist and
communicate with flight control subsystems. Also, the lowest
level of the aforementioned software architecture is inevi-
tably tightly coupled with the hardware it is implemented
on, in order to effectively abstract it from the higher ones.
To solve these issues, a two‐level hardware architecture was
implemented: the lower level is entirely dedicated to real‐
time flight operations and drone control, while the
higher level executes all the mission tasks, interfacing itself
with the other to issue commands and obtain feedback.
Also, the higher level is the one that actually hosts and runs
a distributed software architecture, being in charge of
localisation, navigation, and supervision, while flight stabili-
sation and control are better handled by an embedded,
monolithic, and dedicated real‐time system.

3.2.1 | Linux‐based high‐level SoC and open‐
source real‐time flight controller

Figure 3 shows the hardware architecture that has been
deployed on the final quadcopter. It is made up of the
following modules:

� Holybro Pixhawk 4 real‐time flight controller;
� Nvidia Jetson Xavier NX SoC.

The Pixhawk 4 sits at the lowest level. It is essentially an
embedded system that integrates many sensors (e.g., inertial
measurement unit [IMU], gyroscope, accelerometer) in a single
package, together with an STM32 ARM CPU (Advanced RISC
Machine central processing unit) and an I/O coprocessor. On
this system, the NuttX real‐time Operating System (RTOS) is
installed, in which it runs the open‐source flight control
firmware PX4 Autopilot. PX4 Autopilot is an open source
project that provides firmware for flight controller developers
and vendors and drone developers, maintained by an open
community following an open standard. It is fully custom-
isable and documented, offering a variety of features out‐of‐
the‐box like.

� angular and vertical stabilisation;
� various control modes, for example, manual, automatic, and

remote.
� advanced sensor fusion algorithm based on the Extended

Kalman Filter, namely EKF2.

A detailed description of how the PX4 firmware multicopter
stabilisation and control modules work can be found in Ref.
[27]. In this scenario, the EKF2 algorithm was used to integrate
and merge different measurements from both integrated sen-
sors and a visual localisation system, which had very different
sampling times. The Nvidia Jetson Xavier NX SoC sits at the
highest level of the architecture. It features a six‐core ARM
CPU, 8 GB of RAM, an Nvidia Volta graphics processing
unit (GPU), Gigabit Ethernet and WiFi connectivity, and a va-
riety of other communication interfaces. It has been chosen for
this application exactly because of all these features, the
compact size, and the relatively low power consumption. It

F I GURE 2 Multi‐level software and hardware architecture scheme.
Thin arrows indicate communications established with ROS 2 interfaces,
and thick arrows represent dedicated software interfaces. White boxes
represent ROS 2 nodes. ROS, Robot Operating System.

F I GURE 3 Hardware architecture scheme.

BIANCHI ET AL. - 5 of 15

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

natively supports the Linux operating system with a PREEMPT
kernel, which made it the ideal choice for the deployment of an
architecture based on the tools introduced in Section 2.

3.2.2 | DDS‐based microRTPS bridge

The two systems that make up the onboard quadcopter elec-
tronics need to communicate in order to organise their oper-
ations. However, their scopes are different: The Pixhawk 4
handles drone control in real‐time, while the Xavier NX runs
heavier and slower algorithms to perform the various mission
tasks. A proper communication infrastructure is necessary in
this context to handle different kinds of data. Again, Figure 3
shows how this has been done: Modules on the NX send
setpoints and control commands to the PX4 firmware,
receiving execution feedback, status information, and odom-
etry samples. To ensure that the efficiency characteristics of the
tools introduced in Section 2 were not only guaranteed but also
fully exploited, this communication infrastructure had to
employ the same paradigms. The previous requirements have
been fulfiled using a package developed by the PX4 commu-
nity named px4_ros_com, slightly tweaked to fit our hardware
platforms. The PX4 firmware is made of different modules
that exchange data internally by using a very lightweight mid-
dleware named uORB; this one is still a publish‐subscribe
middleware, which could be easily handled by a DDS as long
as an appropriate translation is performed. This is the task of
the PX4 endpoint of the microRTPS Bridge: The microRTPS
Client application. It runs on the Pixhawk 4 alongside PX4 in
real‐time, serialising and deserialising transmissions coming
from the other side or going towards it. The other end is
handled by the Linux endpoint of the Bridge: The microRTPS
Agent application. Running on the NX, it has the same task as
the Client, but this time it also has to translate transmissions
for a DDS running on the system. The version used in this
setup was compatible only with the eProsima FastDDS
implementation at the time of writing. With that implementa-
tion, the default one for the Foxy Fitzroy ROS 2 distribution
chosen for this project, topics exposed by the Agent were
immediately discovered by every node in the ROS 2 network,
not only those on the drone but also all peers running on the
remote GCS computer. The physical link used to connect the
two ends was a serial interface (Universal Asynchronous
Receiver‐Transmitter—UART) running at 921,600 bauds.
Thus, a fully distributed control architecture was deployed,
supported by a real‐time communication infrastructure. The
first architecture module to interact with such infrastructure
was the Flight Control mentioned in Figure 2. It offers a va-
riety of ROS 2 services that enable other modules to request
basic flight operations like takeoff, landing, movement to a
particular location in the (X, Y, Z) space, and so on, completely
hiding the intrinsic complexities of requesting the same oper-
ations to PX4 and gathering feedback through the topics
exposed by the Bridge. Since such complexities make up
almost all of the Flight Control module, they are not discussed
any further.

3.3 | Module design

Several approaches have been proposed to create a modular
robotic architecture in the literature. Ref. [28] introduced a
robotic middleware framework for the modular design of
sensory modules, actuation platforms, and task descriptions.
The design paradigm that has been chosen in our development
process consists of creating functional layers. The modules in
each layer are responsible for each specific functionality of the
drone, giving it a set of skills necessary to perform complex
autonomous tasks. The layers for our used case have been
identified as follows: perception and high‐level flight control,
exploration and navigation, and supervision by an FSM. The
first three implement robotic capabilities to achieve auton-
omy, while the last serves as a glue to join all the components
of the architecture together.

3.3.1 | Perception

The main difference between simple mechanisms and robots is
that the latter have the ability to adapt to changes in their
subjects of operation or in their operating environment. The
robot is then able to understand the surrounding environment
and to derive a set of actions from the high‐level goal it has
been given and to implement them through actuation and
control. Perception is physically implemented by means of
sensors (both enteroceptors and exteroceptors) and processing
algorithms applied to the data they produce. Perception has
many declensions: interaction between humans and robots in
industrial environments as addressed in Ref. [29], autonomous
in‐water inspection as studied by Ref. [30] and autonomous
flight and landing as detailed by Ref. [31]. In this section, the
perception modules developed and integrated into the auton-
omous quadcopter are shown and explained.

ArUco recognition
The term ArUco is an acronym that stands for Augmented
Reality University of Cordoba, and it is a synthetic square
marker composed of a wide black border and an inner binary
matrix that determines its identifier (Figure 4). Its imple-
mentation is available as an open source library written in C++
and built upon the OpenCV library, whose purpose is to
recognise markers in images. The ArUco project was presented
in Refs [32, 33]. All markers are made up of a black back-
ground and white squares that form a pattern that is their
unique identifier. There are many sets of markers, called dic-
tionaries, that span from 4 � 4 to 7� 7. The dictionary used in
this article contains 7 � 7 markers that can represent numbers
from 0 to 999. To recognise ArUco markers on the ground and
obtain the required information, the ROS 2 node ArUco
Scanner subscribes to the bottom camera topics on which
frames are published at a rate of 12 Hz and publishes
displacement from recognised markers on another topic. As
soon as a new image arrives, it is immediately analysed. If the
camera has captured at least one marker, the analysis routine
will start extracting the required data. According to the current

6 of 15 - BIANCHI ET AL.

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mission phase, the node could be looking for two different
kinds of ArUcos: markers with IDs from 12 to 26 represent
mobile robots carrying alphanumeric strings, while markers
from 1 to 10 are printed on landing pads. In the first case, the
system sends an alert message to the Navigator node on its
topic and locally saves some pictures of the robot on the
ground. In the second case, the drone has to use what it sees
on the ground to accurately land on a pad, which is slightly
more complicated, as more computations are required in order
to get to the right position. First, the four coordinates of the
ArUco marker corners Pi = (xi, yi), i = 1, …, 4 are used to
compute the pad centre coordinates (xc, yc) with respect to the
upper left corner of the image frame, using the following
closed‐form expressions

xc ¼
x2 − x4ð Þ x1y3 − x3y1ð Þ þ x1 − x3ð Þ x4y2 − x2y4ð Þ

x1 − x3ð Þ y2 − y4ð Þ − x2 − x4ð Þ y1 − y3ð Þ
;

yc ¼
y1 − y3ð Þ x4y2 − x2y4ð Þ þ y2 − y4ð Þ x1y3 − x3y1ð Þ

x1 − x3ð Þ y2 − y4ð Þ − x2 − x4ð Þ y1 − y3ð Þ
:

8
>>><

>>>:

ð1Þ

The previous equations arise from the intersection of two
lines passing through opposite corner points (P1, P3) and (P2,
P4) of the identified marker. Once the coordinates xc and yc
have been computed, a translation is applied to express them in
a reference frame fixed in the centre of the image. By doing so,
the error vector can be obtained between the pad and camera
centres.

The last steps of the algorithm consist of applying a
transformation to the dimensional error vector to express it
with respect to the North‐East‐Down (NED) reference frame
of the drone body:

ex ¼ −evy ;
ey ¼ evx ;

�

ð2Þ

where (ex, ey) are the error components in the NED frame,

while evx ; e
v
y

� �
are the errors along x and y in the camera

reference frame. Finally, these errors are packed into a message
and published so that the Precision Landing node can use
them.

Visual‐SLAM
Visual‐SLAM refers to the use of visual sensors (cameras) to
address the problem of simultaneous localisation and mapping.
SLAM is the computational problem of creating and updating
a map of an unknown environment while simultaneously
keeping track of the position and orientation of the agent on
which the visual sensor is mounted. Several Visual‐SLAM
methodologies have been developed so far, and the most
promising of them (ORB‐SLAM3, OpenVSLAM, and
RTABMap) have been reported by Ref. [34]. An interesting
categorisation approach, dealt with by Ref. [35], summarises
the VSLAM categories into the following categories: feature‐
based, direct, and Red Green Blue‐Depth (RGB‐D) camera‐
based. In our system, we had to focus our efforts on identi-
fying a VSLAM algorithm capable of providing both real‐time
and robustness features. After a comparison of the available
state‐of‐the‐art VSLAM algorithms, ORB‐SLAM2 has been
chosen and implemented. ORB‐SLAM2 is the second version
of the ORB‐SLAM algorithm introduced in Ref. [36]. All the
improvements with respect to the first version have been
summarised in Ref. [37]. ORB‐SLAM2 uses binary feature
extraction from a frame; these features help the algorithm
create a local map while solving bundle adjustment problems.
The same features are used throughout the system to optimise
memory management and maximise efficiency. The algorithm
defines the keyframes as the most important frames on which
the local map points depend. The keyframes are used to
compute the current local pose, creating a covisibility graph
that is used both for localisation and environment mapping.
Another graph is then created as soon as the map grows in
size: Called the essential graph, it is used for loop detection. As
soon as a loop has been detected, the system automatically
performs a loop closure, so all graphs are analysed and
updated, the redundant keyframes and nodes are pruned, and
the local map is revised with the latest measurements in order
to minimise errors. The system works in four phases, namely,
tracking, local mapping, loop closing, and global adjustment.
Each phase is assigned to a specific thread, which constitutes
the real‐time implementation of the whole system. The
tracking phase is employed to track the features in the scene,
while the local mapping uses the same features to create the
local map referred to as the keyframes, as previously specified.
The loop closing phase is required to detect any likely loop and
then pass the information to the global adjustment, a phase
responsible for the global bundle adjustment of the entire map,
in order to increase the overall map accuracy. The video stream
for the ORB‐SLAM2 algorithm can be one of the following:
monocular, stereo, and RGB‐D. In the implementation pre-
sented in this study, a further mode was implemented using
infrared and depth images (IRD mode). This choice has been
made because of some technical limitations of Intel RealSense
cameras; specifically, the main limitation is that the RGB
frames are not aligned in time with the depth frames, while the
infrared frames are. In particular, RGB versus depth frames are
misaligned in time with an always different time slice, which is
fatal to the ORB‐SLAM2 tracking algorithm.

F I GURE 4 ArUco markers with IDs from 1 to 8.

BIANCHI ET AL. - 7 of 15

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The ORB‐SLAM2 algorithm has been heavily modified in
order to increase the number of parameters controlling the al-
gorithm, to include compilation procedures for ARM pro-
cessors, and to integrate several optimisations for Nvidia CUDA
GPUs. The software is provided as an open source in Ref. [38].
The ARM adaptation forced us to disable all the optimisations
related to the x86 architecture, with a consequent performance
drop, especially in the feature extraction and computation
phases, where AVX/SSE vector instruction sets have been
widely used. For that reason, the optimisation of CUDA GPUs
has been taken into account as a mandatory activity in order to
address performance issues. In the distributed architecture
introduced in Section 2, this algorithm is implemented in a ROS
2 node that reads frames published on camera topics and pub-
lishes the current pose estimated by the tracking system and the
current state of the system on two more topics. As a future
development, the VSLAM algorithm will be supported by
robust sensor fusion, integrating other range‐only sensors (e.g.,
UWB and UHF‐RFID), as mentioned in Ref. [39].

3.3.2 | Navigation and guidance

The problem of mobile robot navigation concerns the ability of
a robot to determine its own position in the environment, while
guidance relates to the ability to manage a trajectory and
translate it into control setpoints, as extensively explained in
Refs [40, 41]. Furthermore, as stated in Ref. [42], active SLAM is
the task of actively planning robot paths while simultaneously
building a map and localising within it in a fully autonomous
manner, without any human interaction. In the proposed ar-
chitecture, the node in charge of managing the entire drone
navigation is called theNavigator. Assuming that the localisation
and flight control systems work properly, the operations carried
out by the navigator can be summarised as follows:

� take‐off from any pad;
� exploration of the environment in search of the target

mobile robot;
� navigation from any point on the map to a specific target;
� landing on any pad.

The programed paths are defined by means of points; the
paths are discretised with an interpolation algorithm that is
responsible for creating further intermediate setpoints that are
reached in sequence by the quadcopter. Each setpoint is
considered as reached when the quadcopter position falls in-
side a sphere with a parameterised radius. The following par-
agraphs deal in detail with the operations run by the navigator,
so the take‐off phase is not discussed, as it is managed directly
by the flight controller.

Exploration
After taking off, the drone must explore the environment,
looking for a specific robot on the ground. The exploration
paths are predefined for each pad according to the environ-
ment, in order to maximise the probability of finding the robot.

Additionally, during the exploration phase and to localise itself,
the drone builds a map of the environment as a point cloud
thanks to the ORB‐SLAM2 algorithm. Therefore, exploration
paths have also been designed to execute some loop closures in
order to facilitate the construction of the map and increase its
accuracy. During exploration, the ArUco Scanner is respon-
sible for alerting the navigator that the robot has been iden-
tified. In this case, the drone hovers and requests further
instructions about the landings to perform to the operator at
the GCS. From then on, the subsequent displacements are
managed by the Path Planner module.

Path planning
The goal of the path planner module is to find a valid path from
the current position to the target one, such that it is as short as
possible and collision‐free at the same time. The algorithm
developed solves the problem of path planning by building a
graph that represents the available space in the environment.
The search for the shortest routes is performed using the A*
search algorithm [43], whose optimality with respect to the
problem of interest is formally proven in Ref. [44]. The first
step consists of building the graph directly from the point cloud
of the environment obtained through the ORB‐SLAM2 algo-
rithm. The environment is then divided into cubes by a three‐
dimensional grid with variable resolution, and each cube is
identified according to its centre. The interconnection of the
free cubes constitutes the graph. All those cubes that are at the
boundaries of the field are automatically marked as non‐viable,
so that the quadcopter will not be able to reach them. Then,
from the pointcloud, the obstacles in the environment and the
related cubes are identified. Initially, the pointcloud is cleaned
by removing the points outside the field. Subsequently, the
various points are associated with the belonging cubes, and
those that contain a number of points greater than a predefined
threshold are identified as not viable. Once that is done, the
remaining ones define the nodes of the graph, and the algo-
rithm proceeds with the construction of the edges. For each
cube, its neighbours are determined as those along eight di-
rections with the same altitude and the two directly above and
below. Given the centres of two neighbouring cubes, a corridor
is estimated according to the size of the drone, and a connecting
edge is inserted between the cubes if and only if there are a
number of points less than a predefined threshold within it.
This procedure allows one to discretise the environment with a
different resolution, but always considering the footprint of the
drone in the displacements. If the corridor respects this con-
dition, the displacement is considered valid, and therefore, an
edge is inserted between the nodes with a cost equal to the
Euclidean distance of the centres. The result of this iterative
process is a graph that represents the space of the test field, and
its computation is performed offline. This information is then
used in an appropriate ROS 2 node, named Path Finder, which
performs the search for the shortest paths between the various
nodes upon request, using an implementation of the A* algo-
rithm developed by the authors to ensure computational effi-
ciency. The Path Finder node is invoked by requesting a path
between the current position and the target one. Initially, the

8 of 15 - BIANCHI ET AL.

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

origin and target cubes are identified, and their practicability is
verified. If it is satisfied, the search for the shortest path on the
graph is launched and it should return the sequence of points
that have to be reached in order to reach the target position. A*
is a path search algorithm with properties of admissibility,
completeness, and optimality, which motivated its choice. The
main feature is that it is an informed search algorithm, which
means that it uses knowledge for the path search process.
Indeed, unlike other algorithms such as Dijkstra, the search of
the shortest path towards the target is performed following a
heuristic, in the form of an estimation of the traversal cost from
the current position to the target one. The better the heuristic,
the better the efficiency of the algorithm. When applied to
navigation in a three‐dimensional space, the Euclidean distance
was used as a heuristic to quickly find the minimum‐distance
path. Figure 5 shows the result of a path planning run where
the starting position is represented in blue, the target position is
represented in red, and the optimal path is represented in green;
the non‐viable cubes are depicted in grey. The developed path
planner software module has several advantages. It is applicable
to any environment starting from its point cloud, allowing us to
freely choose the level of discretisation and accuracy. Moreover,
it also takes into account the drone footprint with a safety
margin to be considered in displacements (Figure 6).

Precision landing
When the drone is led by the path planning node close to a
landing pad and the camera can recognise its marker, the FSM
invokes the node in charge of executing the precision landings.
Landing pads are one m‐side squares with a light blue back-
ground, in the centre of which an ArUco marker is positioned
with a side measuring 0.5 m, as depicted in Figure 7, where
several landing sequences are shown. The goal of this node is
to let the drone land inside the light blue area, possibly on the
marker. As soon as it is invoked by the FSM, it starts receiving
position errors from the ArUco Scanner node and initially
checks if the drone is stabilised (i.e., if roll and pitch angles are
close to zero) so that the camera readings can be considered
correct. If the drone attitude is not acceptable, the currently
measured errors are discarded. We recall that position errors ex,
ey are computed by the ArUco Scanner between the centre of
the pad and the centre of the image, expressed in the NED
reference frame of the drone body. To adjust the position of
the drone in order to improve its alignment, the coordinates

must be expressed with respect to the world‐fixed NED
reference frame. Therefore, a rotation around the z axis (yaw)
is required to transform ex and ey so that they can be used to
reach the proper position above the pad

ewx
ewy

 !

¼
cos ψ −sin ψ
sin ψ cos ψ

� �
ex
ey

� �

; ð3Þ

F I GURE 5 The non‐viable cubes are depicted in grey, the starting
position is depicted in blue, and the optimal path to reach the red target
position is depicted in green.

F I GURE 6 Landing pad with an ArUco marker.

F I GURE 7 Precision landing sequences during the Leonardo Drone
Contest 2021. The picture shows the successful precision landings
performed on the ArUco landing pads.

BIANCHI ET AL. - 9 of 15

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

where ψ is the current yaw angle and ewx ; e
w
y

� �
are the co-

ordinates expressed in the fixed world frame. Consistent results
are ensured by applying a simple first‐order filter to the pre-
vious errors in order to reduce fast and unwanted variations
due to the ArUco border miscalculations, and by truncating
errors to centimetres to filter some numerical noise. Subse-
quently, the node checks if the pad centre lies inside a circle of
parameterised radius and if the linear velocities are sufficiently
small. If such conditions are met, the reference altitude at
which the drone must remain is decreased by a parameterised
value. At this point, two different scenarios may arise
� if the current reference altitude is less than a parameterised

minimum, the node initiates the final landing procedure,
invoking the PX4 firmware by means of a ROS 2 service
offered by the Flight Control module;

� if the drone is still too high, the node tries to improve the
alignment by reaching a new position defined as the sum of
the current drone positionwith respect to theworld frame and
the two linear errors ewx ; e

w
y

� �
computed as explained above.

The node described so far does not embed an actual
controller for positioning, as it is entirely based on the PX4
position control.

3.3.3 | Finite‐state machine

The set of software modules ultimately includes an FSM, which
implements the supervision logic placed at the highest level of
the software architecture. From a high‐level point of view, the
drone appears as an automaton capable of carrying out a
complete mission within the terms established by the Leo-
nardo Drone Contest rules, managing unexpected situations as
much as possible, such as breakdowns, battery depletion, or
loss of tracking by the localisation system. Requests towards
the various other modules are formulated during transitions
between the states, which are triggered on the basis of the
current state and other events that have occurred in the
meantime. According to the rest of the architecture, this
module integrates a ROS 2 node that is used to invoke the
other modules and receive feedbacks and alerts. During the
transition to the initial state, all the other modules are queried
through APIs offered by the ROS 2 middleware: If all are fully
operational, the mission sequence is initiated. The Meta State
Machine library, part of the C++ boost libraries, was used for
the implementation of the actual FSM. This library allowed us
to define the following:

� states as structures with methods in which to code what to
do when transiting in and out of each one;

� events as structures that could possibly hold data to be
processed by the state methods during transitions;

� transitions and entire machines by instantiating template
classes, whose code, however, resembled a real table.

The description of the machine and its states follows the
dynamics of a mission as established by the Contest rules. The

entire mission has therefore been coded, following the various
levels of abstraction illustrated, in a single routine in which the
various transitions between the states are invoked depending
on the conditions in which the drone is found after each step.
The management of error conditions is possible through the
meta‐machine concept: The main parts of a mission take place
in states that constitute a separate FSM, from which one can
always exit towards the termination states. It has been found
experimentally that it is very risky to request an automatic
emergency landing when something goes wrong, especially
when the VSLAM system stops working; for this reason, it was
decided that, in the case of problems, the FSM should
immediately stop the execution without requiring any other
operation, thus allowing the pilot to engage manual control as
soon as possible. A graphical representation of the two high‐
and low‐level machines is offered in Figures 8 and 9.

4 | EXPERIMENTAL RESULTS

The system described so far has been put through a complex set
of tests to investigate the operational capabilities of eachmodule
and the robustness of the FSM. Due to the limited space
available in the university facilities, it was possible to obtain an
extensive verification of the harmonic functioning of all the
modules only during the Contest. The single modules have also
been evaluated one by one in a series of laboratory tests, to show
the performance of each. In this section, both laboratory ex-
periments and the results collected during the Contest are
shown and analysed, and the Contest results are compared with
the state of the art in Visual Odometry methodologies.

4.1 | Perception module evaluation

This section presents the evaluation of the perception module
(both ArUco recognition and Visual‐SLAM algorithms) with
tests conducted in an indoor environment.

4.1.1 | ArUco recognition

The ArUco recognition module, based on the OpenCV C++
implementation, has been tested to evaluate its performance. A
set of tests was performed for different marker sizes and
different distances between the camera and the marker (under
the same conditions). The ArUco dictionary used for the tests

F I GURE 8 High‐level finite‐state machine state diagram.

10 of 15 - BIANCHI ET AL.

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

is the same as that used in the Contest setup (i.e., 7 � 7
markers, representing numbers from 0 to 999), and the size of
the ArUcos was 6.5 cm � 6.5 cm and 3.5 cm � 3.5 cm. The
camera resolution was set to 640 � 480, and the tests were
repeated under different light conditions (light and dark) at
different camera to ArUco distances (80 cm and 120 cm). The
test results are reported in Table 1 and show that the perfor-
mances are very good when the ArUco size is 6.5 cm � 6.5 cm
(both in light and dark conditions), but the performance de-
grades under dark conditions where the recognition module
cannot detect ArUco when the distance is 80 cm, while it can
still detect it at 120 cm, but sometimes it fails in recognition
(i.e., it loses the ArUco). In conclusion, ArUco is a very good
choice for an indoor environment with visual markers
deployed on the walls or the floor when the requirements are
highly flexible and good real‐time performance.

4.1.2 | Visual‐SLAM

The Visual‐SLAM algorithm is based on a hardware‐optimised
implementation of the ORB‐SLAM2 algorithm, as illustrated
in Section “Visual‐SLAM”. The custom implementation has
been tested in an indoor office environment with varying light

conditions in order to assess its performance in terms of Root
Mean Squared Error (RMSE) between the estimated trajectory
and ground truth points. Since there was no availability of a
complete ground truth along all trajectories, the system was
tested at five ground truth points that were measured with a
laser sensor with a precision of �2 mm. The hardware setup
used for the test was the same as that deployed on the UAS
prototype, as described in Section 3.2.1. The results are pre-
sented in Figure 10, where the ORB‐SLAM2 trajectory is
depicted together with the reference trajectory and the ground
truth waypoints where the RMSE between the estimated and
real position has been calculated. Table 2 shows the RMSE
between the ORB‐SLAM2 and ground truth positions at the
five waypoints. The results show that the ORB‐SLAM2 algo-
rithm works even on this new platform, intrinsically different
from the one it was designed for, while there is still room for
improvement.

4.1.3 | Precision landing evaluation

The performance and correctness of the Precision Landing
module were evaluated in a series of tests performed on the
Contest competition field, which Leonardo made available to
participating teams for a limited time before the Contest. The
complete map of the field is shown in Figure 11. The tests

F I GURE 9 Mission finite‐state machine state diagram.

TABLE 1 Quantitative evaluation of the
ArUco recognition module. Light and Dark
report, respectively, the success rate of the
ArUco recognition module tested on four
attempts under the conditions specified.

ArUco size (cm) ArUco‐camera distance (cm) Light (%) Dark (%)

6.5 � 6.5 80 100 100

6.5 � 6.5 120 100 100

3.5 � 3.5 80 100 75

3.5 � 3.5 120 100 0

F I GURE 1 0 ORB‐SLAM2 estimated trajectory (red, solid) over the
reference path (black, dashed) with waypoints (where 0 is the home
position) used as ground truth to estimate the root mean squared error.

BIANCHI ET AL. - 11 of 15

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

consisted of reaching a specific landing pad; in case the ArUco
marker was correctly identified, the Precision Landing module
made position corrections to align the centre of the drone with
the centre of the landing pad. The altitude was then gradually
decreased in a controlled descent until the floor was reached,
continuously adjusting the position of the drone. The results
are presented in Table 3, where the landing pad positions are
compared with the landing position of the drone after the
corrections were made by the Precision Landing module and
the final descent.

4.2 | Real experiments

In the laboratory test (a video is available here),1 it is shown how
the drone starts an exploration and perception phase, during
which a map of the environment is created, and the drone is
localised within it. During this phase, an ArUco is identified,
which acts as a dummy robot. Once the exploration phase is
complete, the mission begins, which in the present case involves
navigation and landing on two pads. The first one that the drone
should reach was removed on purpose and thus cannot be seen
to test the FSM branch, which involves searching for the pad in
the proximity of its known location. Since it does not find the
pad, it proceeds to the next one, successfully recognised, and

then a precision landing over it is successfully performed.
Figure 12 shows the complete path covered during this run;
although the effectively available space in the laboratory was
limited, it allowed one to fully test the algorithms in preparation
for the contest. The test lasted 7 min and 33 s, covering an
overall distance of 52 m at a maximum speed of 1.7 km/h. The
path is quite clean except for a large oscillation towards the end
of the first exploration loop due to a computation overload of
the Xavier NX companion PC identified on this run and sub-
sequently solved. The overshoot is visible in Figure 13. To
evaluate the overall performance of the navigation subsystems,
the RMSE of this test was computed for each axis and is shown
in Table 4. During the Contest, it was necessary to fly for longer
in order to complete a full mission: The quadcopter was able to
achieve 14 min of flight time, covering an overall distance of
118 m. The example shown here corresponds to the flight
uploaded in the official video2 of the race. In this case, the
exploration path is shorter, and once the robot has been
detected, the mission starts in order to look for the landing pads.
Figure 14 shows the photo acquired by the drone when the
robot was found on the ground, and Figure 15 shows the path
covered during the Contest run. Five valid landings were ach-
ieved during the Contest run. The RMSE values throughout the
path are given in Table 5. The error in the (x, y) plane is lower

TABLE 2 RMSE between the ORB‐SLAM2 estimated trajectory and
the ground truth waypoints.

Waypoint position (x, y) (m) ORB‐SLAM2 position (x, y) (m)

(4.788, 7.901) (4.718, 8.158)

(7.826, 8.501) (7.925, 8.871)

(12.986, 10.626) (13.329, 11.146)

(2.053, 5.634) (1.980, 5.729)

(2.053, 1.676) (2.034, 1.665)

RMSE 0.352 m

Abbreviation: RMSE, root mean squared error.

F I GURE 1 1 Map of the Leonardo Drone Contest 2021 competition
field; landing pads are highlighted in green and numbered, and the obstacles
are in grey‐scale and have their height written above (cm).

TABLE 3 RMSE between the positions of the landing pads and the
positions achieved after the corrections made by the Precision Landing
module. The results are relative to the landings made on pads 3, 5, and 7.

Landing pads (x, y) Landing positions (x, y)

(−10.000, −7.000) (−10.106, −7.021)

(−13.052, −2.000) (−13.052, −2.021)

(−2.700, −6.700) (−2.692, −6.670)

RMSE 0.068 m

Abbreviation: RMSE, root mean squared error.

F I GURE 1 2 Test carried out in the laboratory—(x, y) path. The green
path represents the set points, while the red path represents the estimated
trajectory.

1https://youtu.be/N8IV4K4qBb4 2https://youtu.be/ayUybULDDwg?t=8940

12 of 15 - BIANCHI ET AL.

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://youtu.be/N8IV4K4qBb4
https://youtu.be/ayUybULDDwg?t=8940

since the first loop has been executed immediately: in this way,
theORB‐SLAM2 localisation algorithm obtained a fairly reliable
map in a shorter time compared to the test in the laboratory. The
RMSE on the z axis is higher because in this case, the variations
on z were significantly higher.

The previous experimental results have been compared with
the most relevant systems in the literature to show that the
proposed method performs comparably to the other method-
ologies presented. To this end, the TUMVI Benchmark [45] has
been used; the sequence selected in the data set has been chosen
according to a comparable length and environmental complexity
(corridor4, with a length of 114 m). In order to compare the
proposed methodology with the state‐of‐the‐art algorithms in
Visual Odometry, the following algorithms have been chosen
for comparison: VINS‐Mono [46], OKVIS [47], ROVIO [48],
BASALT [49], and ORB‐SLAM3 [50]. The results are shown in
Table 6. FromTable 6, it is possible to see that the RMSE for the

two environment sets (TUM VI corridor4 and the Leonardo
Drone Contest competition field), with similar lengths and
environmental complexity, are still comparable, showing that
our proposed methodology is still suitable for such a challenging
environment. However, there is room for improvement, also
taking into account, in future developments, IMU measure-
ments in the Visual Odometry algorithm to preventmap drifting
and thus further reduce the RMSE.

5 | CONCLUSIONS

In this study, a general purpose distributed architecture for
robotic systems has been presented. The whole architecture is
based on ROS 2, taking advantage of the industrial grade DDS
middleware that allowed the implementation of transparent
communication throughout the system components, ensuring
proper QoS requirements for each communication layer. The
ROS 2 architecture has been exploited extensively to build all
application blocks on a soft real‐time Linux operating system.
Particular attention was given to the design of the architecture
of the whole system, respecting the paradigms of a distributed
software architecture. The general results have then been
applied to an autonomous quadcopter in order to build a set of
solutions ranging from low‐level hardware optimisations and
operating system setup, to perception, exploration and many
higher‐level modules. The experimental results, performed
both in a laboratory and in realistic Leonardo Drone Contest
environments, mainly showed how strong and reliable the
software architecture is, especially from the point of view of
the overall level of autonomy that has been achieved. The
performances of the presented architecture, in terms of both

F I GURE 1 3 Local position for the z coordinate. The green curve
represents the setpoints for the z coordinate, while the red curve represents
the estimated z trajectory.

TABLE 4 Laboratory test RMSE (m) along each axis.

RMSEx (m) RMSEy (m) RMSEz (m)

0.37 0.47 0.29

Abbreviation: RMSE, root mean squared error.

F I GURE 1 4 Robot detection image (post‐processed by the ArUco
Scanner node).

F I GURE 1 5 Leonardo Drone Contest—(x, y) path. The green path
represents the setpoints, while the red one represents the estimated
trajectory.

TABLE 5 Contest run RMSE (m) along each axis.

RMSEx (m) RMSEy (m) RMSEz (m)

0.21 0.24 0.38

Abbreviation: RMSE, root mean squared error.

BIANCHI ET AL. - 13 of 15

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

autonomy and reliability, led to the achievement of the second
prize at the 2021 Edition of the Leonardo Drone Contest.

The architecture proposed in this study exploits the capa-
bilities of the ROS 2 framework and enables scalability and
secure real‐time communication in the context of UASs thanks
to the underlying DDS middleware. Furthermore, the appli-
cation of a state‐of‐the‐art algorithm for Visual‐SLAM
(namely, ORB‐SLAM2 with several improvements) on a real
UAS is another innovation to be mentioned together with the
development of a flexible path planner working in any envi-
ronment. As for future developments and contributions, the
case where the drone takes off from an uneven surface will also
be taken into account to make the presented system even more
autonomous and exploitable in more realistic contexts.
Another case that will be subsequently studied is that of
completely unknown environments that the drone has to
explore and map in real‐time with the algorithms and software
tools presented here.

ACKNOWLEDGEMENTS
The authors want to thank Leonardo S.p.A. for the availability,
testing scenarios, and granted participation in the Leonardo
DroneContest.Without their support in testing the systemusing
their facilities, this work would not have been possible. Another
thanks goes to Marco Passeri, Ph.D., for his fundamental sup-
port during the development and test phases of the system and
for sharing his precious knowledge with the team. This work
has been supported in part by the Italian Ministry of Research
in the framework of the Program for Research Projects of Na-
tional Interest (PRIN), under Grants No. 2017YKXYXJ and
No. 2020RTWES4.

CONFLICT OF INTEREST STATEMENT
The authors do not report any conflict of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

ORCID
Fabrizio Romanelli https://orcid.org/0000-0002-1888-
7004

REFERENCES
1. Ahmad, A., Ali Babar, M.: Software architectures for robotics systems: a

systematic mapping study. J. Syst. Software 122, 16–39 (2016). https://
doi.org/10.1016/j.jss.2016.08.039

2. Yang, S., et al.: Towards a hybrid software architecture and multi‐agent
approach for autonomous robot software. Int. J. Adv. Rob. Syst. 14(4),
1729881417716088 (2017). https://doi.org/10.1177/1729881417716088

3. Jahn, U., Wolff, C., Schulz, P.: Concepts of a modular system architecture
for distributed robotic systems. Computers 8(1), 25 (2019). https://doi.
org/10.3390/computers8010025. https://www.mdpi.com/2073‐431X/
8/1/25

4. Magee, J., et al.: Specifying distributed software architectures. In: Soft-
ware Engineering—ESEC '95, pp. 137–153 (2006)

5. Knoop, S., et al.: A corba‐based distributed software architecture for
control of service robots. In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
vol. 4, pp. 3656–3661 (2004)

6. Mishra, A., Mishra, D.: Software architecture in distributed software
development: a review. In: Demey, Y.T., Panetto, H. (eds.) On the Move
to Meaningful Internet Systems: OTM 2013 Workshops, pp. 284–291.
Springer Berlin Heidelberg, Berlin (2013)

7. Mattmann, C., et al.: Software architecture for large‐scale, distributed,
data‐intensive systems. In: Proceedings of the Fourth Working IEEE/
IFIP Conference on Software Architecture (WICSA 2004), pp. 255–264
(2004)

8. Lütkebohle, I., et al.: Generic middleware support for coordinating robot
software components: the task‐state‐pattern. J. Software Eng. Robot.
(2011)

9. Quigley, M., et al.: ROS: an open‐source robot operating system. In:
Proceedings of the IEEE International Conference on Robotics and
Automation Workshop on Open Source Software, vol. 3 (2009)

10. Malavolta, I., et al.: How do you architect your robots? State of the
practice and guidelines for ROS‐based systems. In: 2020 IEEE/ACM
42nd International Conference on Software Engineering: Software En-
gineering in Practice (ICSE‐SEIP), pp. 31–40 (2020)

11. Open Source Robotics Foundation: ROS2. https://github.com/ros2
12. Pardo‐Castellote, G.: OMG data‐distribution service: architectural over-

view. In: In Proceedings of the IEEE International Conference on
Distributed Computing Systems Workshops, pp. 200–206 (2003)

13. Schlesselman, J.M., Pardo‐Castellote, G., Farabaugh, B.: OMG data‐
distribution service (DDS): a architectural update. In: In Proceedings
of the IEEE Military Communications Conference, vol. 2, pp. 961–967
(2004)

14. Maruyama, Y., Kato, S., Azumi, T.: Exploring the performance of ROS2.
In: Proceedings of the 13th International Conference on Embedded
Software, pp. 1–10 (2016)

15. Shi, L., Marcano, N.J.H., Jacobsen, R.H.: A review on communication
protocols for autonomous unmanned aerial vehicles for inspection
application. Microprocess. Microsyst. 86, 104340 (2021). https://doi.
org/10.1016/j.micpro.2021.104340. https://www.sciencedirect.com/
science/article/pii/S014193312100497X

16. Lee, H., et al.: A robot operating system framework for secure UAV
communications. Sensors 21(4), 1369 (2021). https://doi.org/10.3390/
s21041369

17. Antonelli, G.: Interconnected dynamic systems: an overview on distrib-
uted control. IEEE Control Syst. Mag. 33(1), 76–88 (2013)

18. Ahmed, N., Cortes, J., Martinez, S.: Distributed control and estimation of
robotic vehicle networks: overview of the special issue. IEEE Control
Syst. Mag. 36(2), 36–40 (2016)

19. Bauer, F.L., et al.: Software Engineering. North Atlantic Treaty Organi-
zation Science Committee, Tech. Rep. (1968)

20. OMG: Omg Data Distribution Service (DDS) Version 1.4. Object
Management Group, Tech. Rep. formal/2015‐04‐10 (2015)

21. OMG: The Real‐Time Publish‐Subscribe Protocol DDS Interoperability
Wire Protocol (DDSI‐RTPSTM) Specification Version 2.5. Object
Management Group, Tech. Rep. formal/2021‐03‐03 (2021)

TABLE 6 TUM VI Benchmark
corridor4(1) (length 114 m) and Drone Contest
environment(2) (length 118 m): RMSE (m) for
regions with available ground‐truth data.

VINS‐Mono(1) OKVIS(1) Our method(2) ROVIO(1) BASALT(1) ORB‐SLAM3(1)

0.25 0.26 0.27 0.13 0.21 0.21

Note: The bold value represents the lowest RMSE.
Abbreviation: RMSE, root mean squared error.

14 of 15 - BIANCHI ET AL.

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-1888-7004
https://orcid.org/0000-0002-1888-7004
https://orcid.org/0000-0002-1888-7004
https://doi.org/10.1016/j.jss.2016.08.039
https://doi.org/10.1016/j.jss.2016.08.039
https://doi.org/10.1177/1729881417716088
https://doi.org/10.3390/computers8010025
https://doi.org/10.3390/computers8010025
https://www.mdpi.com/2073-431X/8/1/25
https://www.mdpi.com/2073-431X/8/1/25
https://github.com/ros2
https://doi.org/10.1016/j.micpro.2021.104340
https://doi.org/10.1016/j.micpro.2021.104340
https://www.sciencedirect.com/science/article/pii/S014193312100497X
https://www.sciencedirect.com/science/article/pii/S014193312100497X
https://doi.org/10.3390/s21041369
https://doi.org/10.3390/s21041369
https://orcid.org/0000-0002-1888-7004

22. Macenski, S., et al.: Robot operating system 2: design, architecture, and
uses in the wild. Sci. Robot. 7(66) (2022). https://www.science.org/doi/
abs/10.1126/scirobotics.abm6074

23. Thomas, D., Woodall, W., Fernandez, E.: Next‐generation ROS: building
on DDS. In: ROSCon Chicago 2014. Open Robotics, Mountain View,
CA (2014). https://vimeo.com/106992622

24. Gutiérrez, C.S.V., et al.: Towards a distributed and real‐time framework
for robots: evaluation of ROS 2.0 communications for real‐time robotic
applications. CoRR abs/1809.02595 (2018). http://arxiv.org/abs/1809.
02595

25. Saito, Y., et al.: Priority and synchronization support for ROS. In: 2016
IEEE 4th International Conference on Cyber‐Physical Systems, Net-
works, and Applications (CPSNA), pp. 77–82 (2016)

26. Jiang, Z., et al.: Message passing optimization in robot operating system.
Int. J. Parallel Program. 48(1), 119–136 (2020). https://doi.org/10.1007/
s10766‐019‐00647‐w

27. Brescianini, D., Hehn, M., D'Andrea, R.: Nonlinear Quadrocopter Atti-
tude Control: Technical Report. ETH Zurich, Tech. Rep. (2013)

28. Elkady, A., et al.: A structured approach for modular design in robotics
and automation environments. J. Intell. Rob. Syst. 72(1), 5–19 (2012).
https://doi.org/10.1007/s10846‐012‐9798‐y

29. Bonci, A., et al.: Human‐robot perception in industrial environments: a
survey. Sensors 21(5), 1571 (2021). https://doi.org/10.3390/s21051571.
https://www.mdpi.com/1424‐8220/21/5/1571

30. Hover, F., et al.: Advanced perception, navigation and planning for
autonomous in‐water ship hull inspection. Int. J. Robot. Res. 31(12),
1445–1464 (2012). https://doi.org/10.1177/0278364912461059

31. Singh, S., et al.: Perception for safe autonomous helicopter flight and
landing. In: 72nd Annual Forum and Technology Display, American
Helicopter Society (AHS) (2016)

32. Romero‐Ramirez, F.J., Muñoz‐Salinas, R., Medina‐Carnicer, R.: Speeded
up detection of squared fiducial markers. Image Vis. Comput. 76, 38–47
(2018). https://doi.org/10.1016/j.imavis.2018.05.004

33. Garrido‐Jurado, S., et al.: Generation of fiducial marker dictionaries using
mixed integer linear programming. Pattern Recogn. 51, 481–491 (2016).
https://doi.org/10.1016/j.patcog.2015.09.023

34. Merzlyakov, A., Macenski, S.: A comparison of modern general‐purpose
visual SLAM approaches. CoRR abs/2107.07589 (2021). https://arxiv.
org/abs/2107.07589

35. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual slam algorithms: a survey
from 2010 to 2016. IPSJ Trans. Comp. Vis. Appl. 9(1), 16 (2017). https://
doi.org/10.1186/s41074‐017‐0027‐2

36. Mur‐Artal, R., Montiel, J.M.M., Tardós, J.D.: Orb‐slam: a versatile and
accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163
(2015). https://doi.org/10.1109/tro.2015.2463671

37. Mur‐Artal, R., Tardós, J.D.: ORB‐SLAM2: an open‐source slam system
for monocular, stereo, and RGB‐D cameras. IEEE Trans. Robot. 33(5),
1255–1262 (2017). https://doi.org/10.1109/tro.2017.2705103

38. Romanelli, F.: ORB‐SLAM2—new parameters management, ARM
compilation, CUDA GPU compatibility. https://github.com/
fabrizioromanelli/ORBSLAM2 (2021)

39. Di Giampaolo, E., Martinelli, F., Romanelli, F.: Robust simultaneous
localization and mapping using the relative pose estimation of trilatera-
tion UHF RFID tags. IEEE J. Radio Freq. Ident. 6, 1–1–592 (2022).
https://doi.org/10.1109/jrfid.2022.3179045

40. Farid, K.: Survey of advances in guidance, navigation, and control of
unmanned rotorcraft systems. J. Field Robot. 29(2), 315–375 (2012).
https://doi.org/10.1002/rob.20414

41. Elkaim, G.H., Lie, F.A.P., Gebre‐Egziabher, D.: Principles of guidance,
navigation, and control of UAVs. In: Handbook of Unmanned Aerial
Vehicles, pp. 347–380 (2015)

42. Lluvia, I., Lazkano, E., Ansuategi, A.: Active mapping and robot
exploration: a survey. Sensors 21(7), 2445 (2021). https://doi.org/10.
3390/s21072445

43. Guruji, A.K., Agarwal, H., Parsediya, D.: Time‐efficient a* algorithm for
robot path planning. Procedia Technol. 23, 144–149 (2016). 3rd Inter-
national Conference on Innovations in Automation and Mechatronics
Engineering 2016, ICIAME 2016 05–06 February, 2016. https://doi.
org/10.1016/j.protcy.2016.03.010. https://www.sciencedirect.com/
science/article/pii/S2212017316300111

44. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern.
4(2), 100–107 (1968). https://doi.org/10.1109/tssc.1968.300136

45. Schubert, D., et al.: The TUM VI benchmark for evaluating visual‐inertial
odometry. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1680–1687 (2018)

46. Qin, T., Li, P., Shen, S.: VINS‐mono: a robust and versatile monocular
visual‐inertial state estimator. IEEE Trans. Robot. 34(4), 1004–1020
(2018). https://doi.org/10.1109/tro.2018.2853729

47. Leutenegger, S., et al.: Keyframe‐based visual–inertial odometry using
nonlinear optimization. Int. J. Robot Res. 34(3), 314–334 (2015). https://
doi.org/10.1177/0278364914554813

48. Bloesch, M., et al.: Iterated extended Kalman filter based visual‐
inertial odometry using direct photometric feedback. Int. J. Robot
Res. 36(10), 1053–1072 (2017). https://doi.org/10.1177/02783649177
28574

49. Usenko, V., et al.: Visual‐inertial mapping with non‐linear factor recovery.
IEEE Rob. Autom. Lett. 5(2), 422–429 (2020). https://doi.org/10.1109/
lra.2019.2961227

50. Campos, C., et al.: ORB‐SLAM3: an accurate open‐source library for
visual, visual–inertial, and multimap SLAM. IEEE Trans. Robot. 37(6),
1874–1890 (2021). https://doi.org/10.1109/tro.2021.3075644

How to cite this article: Bianchi, L., et al.: A novel
distributed architecture for unmanned aircraft systems
based on Robot Operating System 2. IET Cyber‐Syst.
Robot. e12083 (2023). https://doi.org/10.1049/csy2.
12083

BIANCHI ET AL. - 15 of 15

 26316315, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12083 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://vimeo.com/106992622
http://arxiv.org/abs/1809.02595
http://arxiv.org/abs/1809.02595
https://doi.org/10.1007/s10766-019-00647-w
https://doi.org/10.1007/s10766-019-00647-w
https://doi.org/10.1007/s10846-012-9798-y
https://doi.org/10.3390/s21051571
https://www.mdpi.com/1424-8220/21/5/1571
https://doi.org/10.1177/0278364912461059
https://doi.org/10.1016/j.imavis.2018.05.004
https://doi.org/10.1016/j.patcog.2015.09.023
https://arxiv.org/abs/2107.07589
https://arxiv.org/abs/2107.07589
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1109/tro.2015.2463671
https://doi.org/10.1109/tro.2017.2705103
https://github.com/fabrizioromanelli/ORBSLAM2
https://github.com/fabrizioromanelli/ORBSLAM2
https://doi.org/10.1109/jrfid.2022.3179045
https://doi.org/10.1002/rob.20414
https://doi.org/10.3390/s21072445
https://doi.org/10.3390/s21072445
https://doi.org/10.1016/j.protcy.2016.03.010
https://doi.org/10.1016/j.protcy.2016.03.010
https://www.sciencedirect.com/science/article/pii/S2212017316300111
https://www.sciencedirect.com/science/article/pii/S2212017316300111
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tro.2018.2853729
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1177/0278364917728574
https://doi.org/10.1177/0278364917728574
https://doi.org/10.1109/lra.2019.2961227
https://doi.org/10.1109/lra.2019.2961227
https://doi.org/10.1109/tro.2021.3075644
https://doi.org/10.1049/csy2.12083
https://doi.org/10.1049/csy2.12083

	A novel distributed architecture for unmanned aircraft systems based on Robot Operating System 2
	1 | INTRODUCTION
	2 | RELATED WORK
	2.1 | The DDS
	2.2 | The ROS 2 robotics middleware
	2.3 | Overall architecture performance

	3 | APPLICATION TO AN AUTONOMOUS QUADCOPTER
	3.1 | Multi‐level design of an autonomous quadcopter
	3.2 | Low level design
	3.2.1 | Linux‐based high‐level SoC and open‐source real‐time flight controller
	3.2.2 | DDS‐based microRTPS bridge

	3.3 | Module design
	3.3.1 | Perception

	ArUco recognition
	Visual‐SLAM
	Outline placeholder
	3.3.2 | Navigation and guidance

	Exploration
	Path planning
	Precision landing
	Outline placeholder
	3.3.3 | Finite‐state machine

	4 | EXPERIMENTAL RESULTS
	4.1 | Perception module evaluation
	4.1.1 | ArUco recognition
	4.1.2 | Visual‐SLAM
	4.1.3 | Precision landing evaluation

	4.2 | Real experiments

	5 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

